Complexity in frustrated systems

Excitation Energy Transport in Physical, Chemical, and Biological Systems The Summit Meeting 2023

Jovan Odavić

> Institute Ruđer Bošković (IRB), Zagreb (Croatia)
© Split, 2nd of August, 2023
European Regional Development Funds: KK.01.1.1.01.0004, KK.01.1.1.01.0009
Croatian Science Foundation (HrZZ): IP-2019-4-3321, UIP-2020-02-4559

Frustrated chemistry

Figure 1. The structure of 4 in the crystal. The hydrogen atoms have been omitted for clarity. Bond length ranges $[\dot{A}]$: $\mathrm{Cr}-\mathrm{F} 1.9098-1.9338$, Cr-O 1.915-1.968, V-F 1.9494-2.0114, V-O (oxide) 1.580, V-O (pivalate) 1.989-2.185 (av esd 0.002). Cr dark green; V purple; F yellow; O red; N blue; C grey.

Angewandte Chemie
 CDCh Eine Zeitschrift der Deutscher Chemiker

Zuschrift i- Full Access
The Magnetic Möbius Strip: Synthesis, Structure, and Magnetic Studies of Odd-Numbered Antiferromagnetically Coupled Wheels ${ }^{\dagger}$

Olivier Cador Dr., Dante Gatteschi Prof., Roberta Sessoll Prof. Finn K. Larsen Prof., Jacob Overgaard Dr., Anne-Laure Barra Dr., Simon J. Teat Dr., Grigore A. Timco Dr. Richard E. P. Winpenny Prof. ... See fewer authors -

First published: 29 September 2004 | https://doi.org/10.1002/ange. 200460211 | Citations: 33
† This work was supported by the EPSRC(UK), the EC-TMR Networks "MoINanoMag" (HPRN-CT-1999-00012) and "QuEMoINa" (MRTN-CT-2003-504880), the German DFG (SPP 1137) and INTAS (00-00172).

Figure 2. Variation of χ_{M} with temperature for 2. The solid line corresponds to the calculated values with $J=16 \mathrm{~K}, J^{\prime}=70 \mathrm{~K}$, and $\langle\mathrm{g}\rangle=2$. In the inset the magnetization versus field measured at $1.6 \mathrm{~K}(\mathrm{O})$ and 2.0 $\mathrm{K}(\mathbf{\Delta})$ is shown.

Frustrated physics

- Trapped ions (Yb) experiment
- Quantum simulator of antiferromagnetic Ising spins
- Connections between ground-state degeneracy and entanglement

nature

Explore content $\vee \quad$ About the journal $\vee \quad$ Publish with us $\vee \quad$ Subscribe
nature > letters > article

Published: 03 June 2010
Quantum simulation of frustrated Ising spins with trappedions
K. Kim 式, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan \& C Monroe

Noture 465, 590-593 (2010) | Cite this article

Figure 3 | Entanglement generation through the quantum simulation.

Overview of the talk

(1) Experimental evidence of the effects of topological frustration
(2) Minimal model
(3) Excess of entanglement
(Long-range nature of entanglement
(6) Robustness to local disentangling gates
(Complexity of entanglement spectrum
(Conclusions and outlook

ar <iv quantiph a axve2009 1054

Quantum Physics
[Submitrad on 21 Sep 202z]
Complexity of frustration: a new source of non-local non-stabilizerness
J. Odavić, T. Haug, G. Torre, A. Hamma, F. Franchini, S. M. Giampaolo
ar XiV $>$ quantiph > axiver2210. 13495
Quantum Physics
[Submitited on 24 Oct 2022]
Random unitaries, Robustness, and Complexity of Entanglement
J. Odavić, G. Torre, N. Mijić, D. Davidović, F. Franchini, S. M. Giampaolo

RBI-ThPhys-2023-xx
Long-range entanglement and topological excitations
G. Torre. ${ }^{1}$ J. Odavič, ${ }^{1}$ P. Frombolz, ${ }^{2}$ S. M. Giampaolo, ${ }^{1}$ and F. Franchini ${ }^{1}$
${ }^{1}$ Ruder Boakovic Institute, Bijenicka cesta 54, 10000 Zagreb, Craatia
${ }^{2}$ Department of Physics, Uniecrsity of Basd, Klingelbergstrasse 82, CH-4056 Basel, Suritzerland (Dated: July 26, 2023)

Topological (geometrical) frustration... in Ising spins

Our focus

- Spatially invariant one-dimensional systems with
(1) Periodic boundary conditions
(2) Odd number of spins
(3) Antiferromagnetic coupling we denote as frustrated boundary conditions (FBC)

In the swamplands of frustration

Frustrated Sytems

Impossibility to satisfy all the constrains

Quantum Frustration

Monogamy of the entanglement

Topological Frustration
Boundary dependent

Extensive Frustration
Boundary independent

Topological Frustration: a simple classical case

$$
H=\sum_{i=1}^{L} \sigma_{i}^{z} \sigma_{i+1}^{z}
$$

Even L

- twofold degenerate ground state manifold
- finite energy gap

Topological Frustration: a simple classical case

$$
H=\sum_{i=1}^{L} \sigma_{i}^{z} \sigma_{i+1}^{z}
$$

Even L

Odd L

- twofold degenerate ground state manifold
- finite energy gap
- $2 L$-fold degenerate ground state manifold
- finite energy gap

Entering the quantum regime. The energy spectrum

$$
H=\sum_{i=1}^{L} \sigma_{i}^{z} \sigma_{i+1}^{z}-\lambda \sum_{i=1}^{L} \sigma_{i}^{x}
$$

Unfrustrated

Minimal topologically frustrated quantum model

One-dimensional transverse field Ising model (TFIM) spin-1/2 quantum chain

$$
H=J \sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+1}^{z}-h \sum_{i=1}^{N} \sigma_{i}^{x}
$$

- Hamiltonian as tensor product of Pauli matrices Hilbert space $\mathcal{H}^{(N)}=\mathbb{C}^{2^{N}}$ of dimension 2^{N}.
- J coupling between the spins, and h the magnetic field
- Mappable via Jordan-Wigner transformation to free fermions, even in presence of frustration.

Entanglement measures

- Rényi- α entanglement entropy

$$
S_{\alpha}\left(\rho_{\mathrm{A}}\right)=\frac{1}{1-\alpha} \log _{2} \operatorname{Tr}\left[\rho_{\mathrm{A}}^{\alpha}\right], \quad \text { with } \quad \alpha \in[0,1) \cup(1, \infty]
$$

where the reduced density matrix is defined as a partial trace over the full density matrix

$$
\begin{equation*}
\rho_{\mathrm{A}}^{\alpha}=\operatorname{Tr}_{\mathrm{B}}|\Psi\rangle\langle\Psi| \tag{1}
\end{equation*}
$$

- Von Neumann entanglement entropy (Rényi $\alpha \rightarrow 1$)
- Nearest-neighbor concurrence (short-range entanglement)

Entanglement properties

Beyond area-law (local) contribution in entanglement in topologically frustrated chains.

Explanation - Reduced density matrix

(1) The ground state at $h \rightarrow 0^{+}$can be represented as a linear superposition of kink states

$$
\left|W_{k}\right\rangle=\frac{1}{\sqrt{N}}(|++-+-\ldots\rangle+|-++-+\ldots\rangle+|+-++-\ldots\rangle+\ldots),
$$

with exact half-chain reduced density matrix $\rho_{[m=N / 2]}^{\text {frus }}$

* 1 and 2: Néel orders, 3: kink even site, 4: kink odd site, dark blue \rightarrow zeroes
(2) Semi-classical picture of a quasiparticle ${ }^{1}$

$$
\rho_{[m]}^{\text {frus }}=\rho_{[m]}^{\text {unfrus }} \otimes \rho_{[m]}^{\text {semi }}, \quad \text { where } \quad \rho_{[m]}^{\text {semi }}=m|0\rangle\langle 0|+(1-m)|1\rangle\langle 1|
$$

${ }^{1}$ Giampaolo, Ramos, and Franchini; J. Phys. Comm. 3, 081001 (2019)

Exact results in the thermodynamic limit

We obtain for the Rényi- α entanglement ${ }^{23}$

$$
S_{\alpha}\left(\rho_{[m]}^{\mathrm{frus}}\right)=\frac{1}{1-\alpha} \log \left(m^{\alpha}+(1-m)^{\alpha}\right)+\log 2,
$$

and in the limit $\alpha \rightarrow 1$ the von Neumann

$$
S_{1}\left(\rho_{[m]}^{\text {frus }}\right)=-m \log (m)-(1-m) \log (1-m)+\log 2 .
$$

- quasiparticle in the ground state!
- excess of long-range entanglement (beyond area-law)!
- entanglement immune to the introducing integrability breaking terms!

[^0]
How robust (stochastically irreversible) is this?

- We attempt to disentangle the frustrated ground state using the entanglement cooling

- Simulated annealing Metropolis Monte-Carlo quantum circuit ${ }^{4}$
- focus on Rényi-2 due to less computational demand
- use GPU parallel code ${ }^{6}$

4 Yang, Hamma, Giampaolo, Mucciolo, and Chamon, Phys. Rev. B 96, 020408 (2017)
5 Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor, Sleator, Smolin, and Weinfurter, Physical Review A 52, 3457 (1995).
${ }^{6}$ N. Mijić, and D. Davidović; arXiv:2203. 09353 (2022).

Entanglement cooling results - arXiv.2210.13495

Figure: Averaged half-chain Rényi-2 entanglement entropy during the entanglement cooling over $M=96$ Metropolis MC trajectories for ground states of the TFIM Hamiltonian different macroscopic phases.

Entanglement spectrum complexity - arXiv.2210.13495

- Consecutive entanglement spectrum spacing ratio histogram and average at the end of the cooling algorithm.
- Frustrated ground state starting point.

$$
\begin{array}{|c|c|}
\hline \text { Set 1 } & \text { Set 2 } \\
\hline h_{j}^{(1)}=\sigma_{j}^{z} \otimes \mathbb{I}_{j+1}+\mathbb{I}_{j} \otimes \sigma_{j+1}^{z} & h_{j}^{(4)}=\sigma_{j}^{x} \otimes \mathbb{I}_{j+1}+\mathbb{I}_{j} \otimes \sigma_{j+1}^{x} \\
h_{j}^{(2)}=\sigma_{j}^{x} \otimes \sigma_{j+1}^{x} & h_{j}^{(5)}=\sigma_{j}^{y} \otimes \mathbb{I}_{j+1}+\mathbb{I}_{j} \otimes \sigma_{j+1}^{y} \\
h_{j}^{(3)}=\sigma_{j}^{y} \otimes \sigma_{j+1}^{y} & h_{j}^{(6)}=\sigma_{j}^{z} \otimes \sigma_{j+1}^{z} \\
\hline
\end{array}
$$

Quantum information perspective (how we get payed)

Limits

- FM Greenberger-Horne-Zeilinger state

$$
|G H Z\rangle=\frac{1}{\sqrt{2 N}}\left(|+\rangle^{\otimes N}+|-\rangle^{\otimes N}\right)
$$

- PARA

$$
|\psi\rangle=\mid+ \text { or }-\rangle^{\otimes N}
$$

- frustrated AFM W-state

$$
|W\rangle=\frac{1}{\sqrt{N}}(|100 \ldots 0\rangle+|010 \ldots 0\rangle+\ldots+|000 \ldots 1\rangle)
$$

Wait, but HOW?!

Transforming $\left|W_{k}\right\rangle$ in a $|W\rangle$ state - arXiv:2209.10541

$$
\begin{gathered}
\left|W_{k}\right\rangle=\hat{\mathcal{S}}|W\rangle \\
|W\rangle=\frac{1}{\sqrt{N}}(|100 \ldots 0\rangle+|010 \ldots 0\rangle+\ldots+|000 \ldots 1\rangle) \\
\left|W_{k}\right\rangle=\frac{1}{\sqrt{N}}(|++-+-\ldots\rangle+|-++-+\ldots\rangle+|+-++-\ldots\rangle+\ldots)
\end{gathered}
$$

$|W\rangle$ retain the maximum amount of b . entanglement after local measurement on one of its part.

$$
\hat{\mathcal{S}}=\prod_{i=1}^{N-1} \mathrm{C}(N, N-i)\left(\prod_{i=1}^{M} \sigma_{2 i-1}^{z}\right) \mathrm{H}(N) \sigma_{N}^{z} \prod_{i=1}^{N-1} \mathrm{C}(i, i+1) \Pi^{z}
$$

Clifford gates (Clifford circuits)

- $\mathbf{H}(i)$ - Hadamard Gate
- $\mathrm{C}(i, j)$ - C-Not Gate
- $\Pi^{z}=\bigotimes_{i=1}^{N} \sigma_{i}^{z}$

Figure: Clifford circuit $\hat{\mathcal{S}}$ for $N=5$.

- These two states are of equal complexity!

Topological ground states? - unpublished

- Topological Entanglement Entropy - universal constant capturing global entanglement in the ground-state ${ }^{7}$
- Inspired by one-dimensional Su-Schrieffer-Heeger (SSH) example we use

$$
S_{\alpha}^{\mathrm{D}}=S_{\mathrm{A}, \alpha}+S_{\mathrm{B}, \alpha}-S_{\mathrm{A} \cup \mathrm{~B}, \alpha}-S_{\mathrm{A} \cap \mathrm{~B}, \alpha} \quad \text { either } \quad 0,1
$$

- Either zero (non-topological) or one (topological)

$S_{2}^{\mathrm{D}}(m, l)=-\log \left(l^{2}+(1-l-m)^{2}+\frac{m^{2}}{2}\right)+\log \left(l^{2}+\left(1-l-\frac{3 m}{2}\right)^{2}+\frac{5 m^{2}}{4}\right)$
$+\log \left(\frac{m^{2}}{4}+\left(1-\frac{m}{2}\right)^{2}\right)-\log \left(m^{2}+(1-m)^{2}\right)$.
7 Kitaev and Preskill, PRL 96, 110404 (2006); Levin and Wen, PRL 96, 110405 (2006)

The end!

Thank you for your attention!

Key points!

- Boundary conditions matter! Beyond Landau paradigm?
- Effects of frustration on entanglement
- Entanglement robustness
- Quantum information perspective
- Link between W and kink W state
- Long-range entanglement and topology?

[^0]: 2 Castro-Alvaredo, De Fazio, Doyon, and Szécsényi; Phys. Rev. Lett. 121, 170602 (2018); JHEP 39 (2018); JHEP 58 (2019). 3 You, Wybo, Pollmann, and Sondhi; Phys. Rev. B 106, L161104 (2022).

