Complexity in frustrated systems

Excitation Energy Transport in Physical, Chemical, and Biological Systems The Summit Meeting 2023

Jovan Odavić

Institute Ruđer Bošković (IRB), Zagreb (Croatia)

© Split, 2nd of August, 2023 European Regional Development Funds: KK.01.1.1.01.0004, KK.01.1.1.01.0009 Croatian Science Foundation (HrZZ): IP-2019-4-3321, UIP-2020-02-4559

Jovan Odavić (IRB)

Complexity in frustrated systems

Split 08/2023

Frustrated chemistry

Figure 1. The structure of 4 in the crystal. The hydrogen atoms have been omitted for clarity. Bond length ranges [Å]: Cr-F 1.9098-1.9338, Cr-O 1.915-1.968, V-F 1.9494-2.0114, V-O(oxide) 1.580, V-O(pivalate) 1.389-2.185 (av esd 0.002). Cr dark green; V purple; F yellow; O red; N blue; C grey.

Zuschrift 🛛 🔂 Full Access

The Magnetic Möbius Strip: Synthesis, Structure, and Magnetic Studies of Odd-Numbered Antiferromagnetically Coupled Wheels[†]

Olivier Cador Dr., Dante Gatteschi Prof., Roberta Sessoli Prof. & Finn K. Larsen Prof., Jacob Overgaard Dr., Anne-Laure Barra Dr., Simon J., Teat Dr., Grigore A. Timco Dr. & Richard E. P., Winpenny Prof. & ... See Hewer authors A

First published: 29 September 2004 | https://doi.org/10.1002/ange.200460211 | Citations: 33

[†] This work was supported by the EPSRC(UK), the EC-TMR Networks "MolNanoMag" (HPRN-CT-1999-00012) and "QUEMOINa" (MRTN-CT-2003-504880), the German DFG (SPP 1137) and INTAS (00-00172).

Figure 2. Variation of χ_M with temperature for **2.** The solid line corresponds to the calculated values with J = 16 K, J = 70 K, and $\langle g \rangle = 2$. In the inset the magnetization versus field measured at 1.6 K ($_{\odot}$) and 2.0 K ($_{A}$) is shown.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Split 08/2023

Frustrated physics

- Trapped ions (Yb) experiment
- Quantum simulator of antiferromagnetic Ising spins
- Connections between ground-state degeneracy and entanglement

Figure 3 | Entanglement generation through the quantum simulation.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Overview of the talk

- Experimental evidence of the effects of topological frustration
- Olinimal model
- Excess of entanglement
- Long-range nature of entanglement
- Robustness to local disentangling gates
- Complexity of entanglement spectrum
- Conclusions and outlook

arXiv > quant-ph > arXiv:2209.10541

Quantum Physics

(Submitted on 21 Sep 2022)

Complexity of frustration: a new source of non-local non-stabilizerness

J. Odavić, T. Haug, G. Torre, A. Hamma, F. Franchini, S. M. Giampaolo

arXiv > quant-ph > arXiv:2210.13495

Quantum Physics

[Submitted on 24 Oct 2022]

Random unitaries, Robustness, and Complexity of Entanglement

J. Odavić, G. Torre, N. Mijić, D. Davidović, F. Franchini, S. M. Giampaolo

RBI-ThPhys-2023-xx

Long-range entanglement and topological excitations

G. Torre,¹ J. Odavić,¹ P. Fromholz,² S. M. Giampaolo,¹ and F. Franchini¹ ¹Ruder Boilowić Institute, Bijenička cesta 54, 10000 Zagreb, Croatia ²Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Dated: July 26, 2023)

(日) (同) (日) (日)

Split 08/2023

Topological (geometrical) frustration... in Ising spins

Our focus

- Spatially invariant one-dimensional systems with
 - Periodic boundary conditions
 - Odd number of spins
 - Antiferromagnetic coupling

we denote as frustrated boundary conditions (FBC)

Image: Image:

In the swamplands of frustration

Frustrated Sytems Impossibility to satisfy all the constrains

Classical (Geometrical) Frustration

Competing Interactions

Quantum Frustration

Monogamy of the entanglement

Topological Frustration

Boundary dependent

Extensive Frustration

Boundary independent

Jovan Odavić (IRB)

<ロト < 回ト < 回ト < 回ト < 回ト</p>

э

Topological Frustration: a simple classical case

$$H = \sum_{i=1}^{L} \sigma_i^z \sigma_{i+1}^z$$

- twofold degenerate ground state manifold
- finite energy gap

7 / 20

(日) (同) (日) (日)

Topological Frustration: a simple classical case

Even L

- twofold degenerate ground state manifold
- finite energy gap

• 2*L*-fold degenerate ground state manifold

イロト イボト イヨト イヨト

• finite energy gap

Split 08/2023

Entering the quantum regime. The energy spectrum

Complexity in frustrated systems	Split 08/2023	8 / 20
----------------------------------	---------------	--------

Jovan Odavić (IRB)

Minimal topologically frustrated quantum model

One-dimensional transverse field Ising model (TFIM) spin-1/2 quantum chain

$$H = J \sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+1}^{z} - h \sum_{i=1}^{N} \sigma_{i}^{x}.$$

- Hamiltonian as tensor product of Pauli matrices Hilbert space $\mathcal{H}^{(N)} = \mathbb{C}^{2^N}$ of dimension 2^N .
- J coupling between the spins, and h the magnetic field
- Mappable via Jordan-Wigner transformation to free fermions, even in presence of frustration.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Entanglement measures

• Rényi- α entanglement entropy

$$S_{\alpha}(\rho_{\mathcal{A}}) = \frac{1}{1-\alpha} \log_2 \operatorname{Tr}[\rho_{\mathcal{A}}^{\alpha}], \quad \text{with} \quad \alpha \in [0,1) \cup (1,\infty]$$

where the reduced density matrix is defined as a partial trace over the full density matrix

$$\rho_{\rm A}^{\alpha} = {\rm Tr}_{\rm B} |\Psi\rangle\langle\Psi|$$
(1)

- Von Neumann entanglement entropy (Rényi $\alpha \rightarrow 1$)
- Nearest-neighbor concurrence (short-range entanglement)

(日) (同) (日) (日)

Entanglement properties

Beyond area-law (local) contribution in entanglement in topologically frustrated chains.

Split 08/2023

< □ > < □ > < □ > < □ > < □ >

11 / 20

3

Explanation - Reduced density matrix

() The ground state at $h \to 0^+$ can be represented as a linear superposition of kink states

$$|W_k\rangle = \frac{1}{\sqrt{N}}\left(|++-+-\ldots\rangle + |-++-+\ldots\rangle + |+-++-\ldots\rangle + \ldots\right),$$

with exact half-chain reduced density matrix $\rho^{\rm frus}_{[m=N/2]}$

* 1 and 2: Néel orders, 3: kink even site, 4: kink odd site, dark blue \rightarrow zeroes

Semi-classical picture of a quasiparticle¹

Exact results in the thermodynamic limit

We obtain for the Rényi- α entanglement²³

$$S_{\alpha}(\rho_{[m]}^{\text{frus}}) = \frac{1}{1-\alpha} \log(m^{\alpha} + (1-m)^{\alpha}) + \log 2,$$

and in the limit $\alpha \rightarrow 1$ the von Neumann

$$S_1(\rho_{[m]}^{\text{frus}}) = -m \log(m) - (1-m) \log(1-m) + \log 2.$$

- quasiparticle in the ground state!
- excess of long-range entanglement (beyond area-law)!
- entanglement immune to the introducing integrability breaking terms!

² Castro-Alvaredo, De Fazio, Doyon, and Szécsényi; Phys. Rev. Lett. **121**, 170602 (2018); JHEP **39** (2018); JHEP **58** (2019). ³ You, Wybo, Pollmann, and Sondhi; Phys. Rev. B **106**, L161104 (2022). ← □ → ← ③ → ← ③ → ← ③ → ← ③ → → ③ → → ③

Jovan Odavić (IRB)

Complexity in frustrated systems

Split 08/2023

How robust (stochastically irreversible) is this?

• We attempt to disentangle the frustrated ground state using the entanglement cooling

 Simulated annealing Metropolis Monte-Carlo quantum circuit⁴

Set 1	Set 2
$ \begin{array}{c} h_{j}^{(1)} = \sigma_{j}^{z} \otimes \mathbb{I}_{j+1} + \mathbb{I}_{j} \otimes \sigma_{j+1}^{z} \\ h_{j}^{(2)} = \sigma_{j}^{x} \otimes \sigma_{j+1}^{x} \\ h_{j}^{(3)} = \sigma_{j}^{y} \otimes \sigma_{j+1}^{y} \end{array} $	$ \begin{split} h_j^{(4)} &= \sigma_j^x \otimes \mathbb{I}_{j+1} + \mathbb{I}_j \otimes \sigma_{j+1}^x \\ h_j^{(5)} &= \sigma_j^y \otimes \mathbb{I}_{j+1} + \mathbb{I}_j \otimes \sigma_{j+1}^y \\ h_j^{(6)} &= \sigma_j^z \otimes \sigma_{j+1}^z \end{split} $

- Set 1 is parity preserving
- Sets 1 & 2 are taken together from the universal set⁵

- focus on Rényi-2 due to less computational demand
- use GPU parallel code⁶

- ⁵ Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor, Sleator, Smolin, and Weinfurter, Physical Review A 52, 3457 (1995).
- ⁶ N. Mijić, and D. Davidović; arXiv:2203.09353 (2022).

Split 08/2023

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

⁴ Yang, Hamma, Giampaolo, Mucciolo, and Chamon, Phys. Rev. B 96, 020408 (2017)

Entanglement cooling results - arXiv.2210.13495

Figure: Averaged half-chain Rényi-2 entanglement entropy during the entanglement cooling over M = 96 Metropolis MC trajectories for ground states of the TFIM Hamiltonian different macroscopic phases.

Jovan Odavić (IRB)

Split 08/2023

Entanglement spectrum complexity - arXiv.2210.13495

- Consecutive entanglement spectrum spacing ratio histogram and average at the end of the cooling algorithm.
- Frustrated ground state starting point.

$$\begin{array}{c} \textbf{Set 1} \\ h_{j}^{(1)} = \sigma_{j}^{*} \otimes \mathbb{I}_{j+1} + \mathbb{I}_{j} \otimes \sigma_{j+1}^{*} \\ h_{j}^{(2)} = \sigma_{j}^{*} \otimes \sigma_{j+1}^{*} \\ h_{j}^{(3)} = \sigma_{j}^{*} \otimes \sigma_{j+1}^{*} \\ h_{j}^{(5)} = \sigma_{j}^{*} \otimes \sigma_{j+1}^{*} \\ \end{pmatrix} \\ \begin{array}{c} h_{j}^{(6)} = \sigma_{j}^{*} \otimes \sigma_{j+1}^{*} \\ h_{j}^{(6)} = \sigma_{j}^{*} \otimes \sigma_{j+1}^{*} \\ \end{array}$$

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Quantum information perspective (how we get payed)

Limits

• FM Greenberger–Horne–Zeilinger state

$$|GHZ\rangle = \frac{1}{\sqrt{2N}} \left(|+\rangle^{\otimes N} + |-\rangle^{\otimes N} \right)$$

PARA

$$|\psi\rangle = |+ \text{ or } -\rangle^{\otimes N}$$

frustrated AFM W-state

$$|W\rangle = \frac{1}{\sqrt{N}} \left(|100...0\rangle + |010...0\rangle + ... + |000...1\rangle \right)$$

Wait, but HOW?!

Jovan Odavić (IRB)

A D > A B > A B

Transforming $|W_k\rangle$ in a $|W\rangle$ state - arXiv:2209.10541

 $\left|W_{k}\right\rangle = \hat{\mathcal{S}}\left|W\right\rangle$

$$\begin{split} |W\rangle &= \frac{1}{\sqrt{N}} \left(|100...0\rangle + |010...0\rangle + ... + |000...1\rangle \right) \\ |W_k\rangle &= \frac{1}{\sqrt{N}} \left(|++-+-...\rangle + |-++-+...\rangle + |+-++-...\rangle + ... \right), \end{split}$$

|W
angle retain the maximum amount of b. entanglement after local measurement on one of its part.

$$\hat{\mathcal{S}} = \prod_{i=1}^{N-1} \mathsf{C}(N, N-i) \left(\prod_{i=1}^{M} \sigma_{2i-1}^z \right) \mathsf{H}(N) \sigma_N^z \prod_{i=1}^{N-1} \mathsf{C}(i, i+1) \Pi^z$$

Clifford gates (Clifford circuits)

- H(i) Hadamard Gate
- C(i, j) C-Not Gate
- $\Pi^z = \bigotimes_{i=1}^N \sigma_i^z$

(日) (同) (日) (日)

These two states are of equal complexity!

Topological ground states? - unpublished

- Topological Entanglement Entropy universal constant capturing global entanglement in the ground-state⁷
- Inspired by one-dimensional Su-Schrieffer-Heeger (SSH) example we use

$$S^{\rm D}_{\alpha} = S_{{\rm A},\alpha} + S_{{\rm B},\alpha} - S_{{\rm A}\cup{\rm B},\alpha} - S_{{\rm A}\cap{\rm B},\alpha} \quad \text{either} \quad 0,1$$

• Either zero (non-topological) or one (topological)

7 Kitaev and Preskill, PRL 96, 110404 (2006); Levin and Wen, PRL 96, 110405 (2006) -

The end!

Thank you for your attention!

Key points!

- Boundary conditions matter! Beyond Landau paradigm?
- Effects of frustration on entanglement
- Entanglement robustness
- Quantum information perspective
- Link between W and kink W state
- Long-range entanglement and topology?

э

20 / 20

(日) (同) (日) (日)