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Devil’s staircase and the absence of chaos in the dc- and ac-driven overdamped
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The devil’s staircase structure arising from the complete mode locking of an entirely nonchaotic system, the
overdamped dc+ac driven Frenkel-Kontorova model with deformable substrate potential, was observed. Even
though no chaos was found, a hierarchical ordering of the Shapiro steps was made possible through the use of a
previously introduced continued fraction formula. The absence of chaos, deduced here from Lyapunov exponent
analyses, can be attributed to the overdamped character and the Middleton no-passing rule. A comparative
analysis of a one-dimensional stack of Josephson junctions confirmed the disappearance of chaos with increasing
dissipation. Other common dynamic features were also identified through this comparison. A detailed analysis
of the amplitude dependence of the Shapiro steps revealed that only for the case of a purely sinusoidal substrate
potential did the relative sizes of the steps follow a Farey sequence. For nonsinusoidal (deformed) potentials,
the symmetry of the Stern-Brocot tree, depicting all members of particular Farey sequence, was seen to be
increasingly broken, with certain steps being more prominent and their relative sizes not following the Farey rule.
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I. INTRODUCTION

For years, Shapiro steps, the result of dynamical mode
locking of frequencies, have been the subject of intensive
theoretical and experimental studies in charge-density [1–7]
and spin-density [8] wave systems, vortex matter [9–11],
irradiated Josephson junctions [12–16], and, more recently,
even in superconducting nanowires [17,18]. As, typically,
in these systems only the averaged or integrated quantities
are accessible for measurement, such as current and voltage,
enormous effort has been dedicated to the better understanding
of the physics behind the Shapiro steps on a microscopic level.
Recently, in driven colloidal systems [19], the microscopic
dynamics underlying mode locking was revealed. In this case,
understanding the link between the observed behavior and the
microscopic dynamics of the system was a key to gaining
better control over the locking of frequencies.

Externally driven systems exhibit very rich dynamics on
both the macroscopic and microscopic levels. One of the mod-
els capable of capturing the essence of frequency locking, and
the appearance of Shapiro steps is the Frenkel-Kontorova (FK)
model under external periodic forces [20–24]. The standard FK
model represents a chain of harmonically interacting identical
particles subjected to the sinusoidal substrate potential [20,21].
When the external dc and ac forces are applied locking occurs
between the frequency of the particles motion over the periodic
potential and the frequency of external ac force [21]. On
the macroscopic scale, this effect is characterized by the
appearance of a staircase of Shapiro steps in the curve for
average velocity as a function of the average external driving
force v̄(F̄ ). The steps are called harmonic if the locking appears

at integer multiples of the ac frequency or subharmonic at
noninteger rational multiples.

Studies of Shapiro steps in the FK model have been par-
ticularly guided by the numerous theoretical and experimental
results in the charge-density wave systems and the systems
of Josephson junctions [20,21,24]. These systems represent
typical examples of dissipative or overdamped physical
systems where the inertia is irrelevant on physical grounds
and where the long-term behavior is largely independent of
how we start up the system [20,21,24]. For example, in the
charge-density wave systems, results of numerous experiments
performed on NbS3 and TaS3 suggested that the inertial
effects were negligible [2,25,26], while in the systems of
Josephson junctions, the inertial terms can be disregarded if the
capacitance of junctions is small enough [12,14,27]. Detailed
investigations of the overdamped Frenkel-Kontorova model
have been done in Refs. [20,24,28]. The dc+ac driven standard
overdamped FK model was very successful in describing
harmonic locking; however, it could not be used for modeling
phenomena related to subharmonic steps. Subharmonic steps
do not exist in commensurate structures with integer values of
winding number, while for the rational, noninteger values of
winding number their size is too small, which makes analysis
of their properties very difficult [29]. On the other hand, a
generalization of the standard FK model, using a deformable
(nonsinusoidal) substrate potential [30], does provide a good
model of subharmonic frequency locking [29,31].

In general, in frequency-locking systems, there is an
interesting connection between mode locking and number
theory: The appearance and ordering of resonances strictly
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follow the Farey rule [32]. Recently, the presence of a Farey
sequence in the appearance and ordering of subharmonic steps
has been shown in the FK model [33].

Understanding the stability of frequency locking in diverse
physical systems, from oscillating Josephson junctions to
periodically forced chicken heart cells, is intimately associated
with understanding the onset of chaotic behavior [34–38].
Instead of cumbersome numerical integration of the underlying
differential equations, a major breakthrough was made by the
application of a one-dimensional discrete map, the “circle
map,” to the modeling of such systems [35,36]. Not only
does the map provide a description of quasiperiodic, periodic,
and chaotic behavior, but also its scaling is the same as
that of a wide variety of dynamical systems that exhibit
mode locking [35,36]. According to the circle map, the
nonlinear systems driven by an external periodic force or field
will most likely exhibit a transition to chaos caused by the
overlapping of resonances, leading to the destruction of the
devil’s staircase [34].

Past studies of the FK model were only focused on the
influence of the system parameters (amplitude and frequency
of the ac force, deformation of potential, noise) on the size and
existence of Shapiro steps [21]. Though these problems are
very important, the complete picture about dynamical mode
locking also requires an examination of possible chaotic be-
havior. The question whether physical systems with competing
frequencies lead to a devil’s staircase structure and, therefore,
necessarily to chaos is of fundamental importance and may
be resolved by a careful study of subharmonic steps and their
properties.

In this paper, we will examine in detail the appearance
and order of subharmonic Shapiro steps in the overdamped
dc+ac driven Frenkel-Kontorova model, particularly focusing
on the signs of chaos. High-resolution analyses of steps reveal
the presence of continued fractions, i.e., the devil’s staircase
structure for which the fractal dimension was calculated over
wide range of system parameters. However, the calculation
of the largest Lyapunov exponent indicates the absence
of chaotic behavior. The analysis is further extended to a
model of intrinsic Josephson junctions, which confirms the
disappearance of chaos as the overdamped limit is approached.
Relative sizes of steps are also examined in detail for
various ac amplitudes and degrees of deformation of the
potential.

The paper is organized as follows. The model is introduced
in Sec. II, and simulation results are presented in Secs. III–V.
The devil’s staircase structure is revealed and its fractal
dimension is determined in Sec. III. Calculation of the largest
Lyapunov exponent and an analysis of chaotic behavior in
the Frenkel-Kontorova model is given in Sec. IV A. The
comparative analysis of the one-dimensional (1D) stack of
intrinsic Josephson junctions irradiated by electromagnetic
waves is made in Sec. IV B. The relative sizes of steps are
studied in Sec V. Finally, Sec. VI concludes the paper.

II. MODEL

We consider the dynamics of a series of overdamped
coupled harmonic oscillators ul , subjected to asymmetric

deformable potential

V (u) = K

(2π )2

(1 − r2)2[1 − cos(2πu)]

[1 + r2 + 2r cos(πu)]2
, (1)

where K is the pinning strength and r is deformation
parameter (−1 < r < 1). This potential belongs to the family
of nonlinear periodic deformable potentials, introduced by
Remoissent and Peyrard [30] as a way to model many specific
physical situations without employing perturbation methods.
By changing the shape parameter r , the potential can be tuned
in a very fine way, from the simple sinusoidal one for r = 0 to
a deformable one for 0 < |r| < 1.

The system is driven by dc and ac forces,

F (t) = Fdc + Fac cos(2πν0t), (2)

which leads to the system of equations of motion,

u̇l = ul+1 + ul−1 − 2ul − V ′(ul) + F (t). (3)

where l = −N/2, . . . ,N/2; and Fac and ν0 are amplitude and
frequency of the ac force respectively.

When the system is driven by a periodic force, two
frequency scales appear: the frequency ν0 of the external
periodic (ac) force and the characteristic frequency of the
particle motion over the periodic substrate potential driven
by the average force F̄ = Fdc. The competition between these
two frequency scales can result in the appearance of dynamical
mode locking. The solution of the system (3) is called resonant
if average velocity v̄ satisfies the relation:

v̄ = iω + j

m
ν0, (4)

where i,j,m are integers. The interparticle average distance
(winding number) ω = 〈(ul+1 − ul)〉 is fixed to the rational
or irrational value for the commensurate or incommensurate
structures respectively. During their motion, the particles
advance iω + j sites during m cycles of the ac force; therefore,
m represents the period of the solution, measured in the cycles
of the ac force [38]. When m = 1, the solution corresponds
to harmonic steps. If m > 1, then the solution is subharmonic
(it includes components at the subharmonics of the ac force),
and in this case, the motion is characterized by the appearance
of a sequence which consists of m cycles of the ac force.
Though the motion is different on each of m cycles that form
the sequence, this sequence can repeat indefinitely. In the
case of a commensurate structure (for which ω is rational),
the resonant velocity can be written in the form v̄ = i

m
ων0,

where the ratio i
m

marks harmonic and subharmonic steps
( i
m

= 1
1 , 2

1 , 3
1 ,... for harmonic steps, and i

m
= 1

2 for half-integer
steps).

The system (3) has been integrated by a fourth-order Runge-
Kutta method with a time step of �t = 0.02/ν0, supplemented
with a step-doubling iteration loop until accuracy of order
10−8 has been achieved [39]. By comparison with more
sophisticated integration methods that make use of more
adaptive step size control, the global accuracy of our algorithm
was consistently found to be less than 10−7. We considered
commensurate structures with the winding number ω = 1/2
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FIG. 1. The average velocity v̄ as a function of the average driving
force F̄ for K = 4, ν0 = 0.2, ω = 1

2 r = 0.01, and different values of
the ac amplitude Fac = 0, 0.1, 0.2, 0.5, and 2 from right to left. The
case Fac = 0 corresponds to the dc-driven system represented by the
dashed line while the dotted line represents linear dependence for a
system of free particles. The numbers mark harmonic steps.

and varied the force adiabatically in steps ranging from
�Fdc = 10−4 to 10−7.

III. NUMBERING OF THE SUBHARMONIC
SHAPIRO STEPS

The number and size of Shapiro steps which appear on the
response function is determined by the amplitude of the ac
force and the extent of deformation of the potential. In Fig. 1,
the average velocity as a function of the average driving force
is presented for various values of the ac amplitude Fac, from
Fac = 0 for the dc driven system to Fac → ∞ for the system
of free particles. Since the deformation of the potential is very
small here (r = 0.01), the model is very close to the standard
FK model, and large harmonic steps dominate in Fig. 1, at
all amplitudes, while subharmonic steps are either very small
or nonexistent. In the limit Fac → 0, the system becomes a
dc-driven system, while in the opposite limit Fac → ∞, it
becomes a system of free particles. Therefore, regardless of
the value of the ac amplitude, the steps will always appear
in the region of driving force which is roughly between the
dc and the free particles linear curve. In their appearance, the
steps are strongly correlated: Large harmonic steps correspond
to small half-integer or subharmonic steps and vice versa [21]
or, in other words, when some steps become large, another one
must shrink.

In all frequency-locking systems, resonances always appear
in a specific order. In the usual examinations of Shapiro
steps in the Frenkel-Kontorova model, the locking order is
not always obvious, since detection of the Shapiro steps
is strongly influenced by the accuracy of the numerical
procedure. However, a very high resolution in the simple
analysis of the response function v̄(F̄ ) reveals a completely
new picture of the locking phenomenon.

We will focus now on the subharmonic steps which appear
between the first and the second harmonics. At the force step
�F = 10−5, and in the region of the ac amplitudes where
large number of well-defined steps appear, the number of

FIG. 2. Number of subharmonic Shapiro steps N detected be-
tween the first and the second harmonics at different values of the ac
amplitude Fac for K = 4, ν0 = 0.2, ω = 1

2 , the force step �F = 10−5,
and the three values of deformation parameter r = 0.01, 0.25, and
0.5 in (a), (b), and (c) respectively.

detectable subharmonic steps ranges from about 5 to 70 at
different deformations as shown in Fig. 2.

We see that the extent of deformation strongly affects the
number of detectable steps. The reason why more steps could
not be observed at large deformation comes from the fact
that the increase of r leads to appearance of very large half-
integer or some other subharmonic steps [21], and since they
are correlated, once some of the subharmonic steps become
very large the other will shrink and become undetectable at the
working resolution (�F = 10−5).

In numerical simulation, the chosen step of the driving
force determines the size of the smallest step we can actually
detect. Therefore, in the response functions v̄(F̄ ), from which
the results in Fig. 2 were obtained, many of the higher-
order subharmonic steps remained undetectable. However,
increasing the resolution by decreasing the force step once
again reveals staircase structure. In Fig. 3, the staircase
structure of the average velocity as a function of the average
driving force v̄(F̄ ) is presented for �F = 10−7.

If we consider the section between the first and the second
harmonic step in Figs. 3(a) and 3(b), then we could see
a large half-integer step 3

2 and some subharmonic steps
between 3

2 and 2. Though it might seem that there are no
subharmonic steps between 1 and 3

2 , further magnification in
Figs. 3(c) and 3(d) once more reveals the devil’s staircase
structure.

If we increase the ac amplitude Fac, then the number of
harmonic steps significantly increases. In Fig. 4, the staircase
structure of the response function v̄(F̄ ) is presented for large
amplitudes of the ac force.
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FIG. 3. The average velocity as a function of the average driving
force v̄(F̄ ) for K = 4, ν0 = 0.2, ω = 1

2 , r = 0.5, and Fac = 0.2.
Numbers mark harmonic and subharmonic steps. The devil’s staircase
in (b), (c), and (d) represent the high-resolution views of the selected
areas in (a), (b), and (c), respectively.

As in the case of Fig. 3, magnification of the steps between
the first and the second harmonics in Fig. 4(a) shows that an
infinite series of subharmonic steps start to appear in Figs. 4(b),
4(c) and 4(d).

It was shown that in the dc+ac-driven FK model, all
observable subharmonic Shapiro steps belong to various Farey
sequences without exceptions [33]. Farey sequence of the order
n consists of all the irreducible fractions between 0 and 1 whose
denominator is less or equal to n: 0 � h � k � n, (h,k) = 1.
If we extend this statement to the case of the interval between

FIG. 4. The average velocity as a function of the average driving
force v̄(F̄ ) for K = 4, ν0 = 0.2, ω = 1

2 , r = 0.5, and Fac = 1.1.
Numbers mark harmonic and subharmonic steps. The devil’s staircase
in (b), (c), and (d) represent the high-resolution views of the selected
areas in (a), (b), and (c), respectively.
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FIG. 5. Part of the Stern-Brocot tree depicting all the members
of Farey sequence F5 and some members of higher Farey sequences.
Fractions corresponding to the integers 1

1 and 2
1 are not shown in the

figure. Fraction 3
2 represents the root or starting node of the tree.

1 and 2, then the first five Farey sequences are given by

F1 =
{

1
1 , 2

1

}
,

F2 =
{

1
1 , 3

2 , 2
1

}
,

F3 =
{

1
1 , 4

3 , 3
2 , 5

3 , 2
1

}
,

F4 =
{

1
1 , 5

4 , 4
3 , 3

2 , 5
3 , 7

4 , 2
1

}
,

F5 =
{

1
1 , 6

5 , 5
4 , 4

3 , 7
5 , 3

2 , 8
5 , 5

3 , 7
4 , 9

5 , 2
1

}
.

(5)

If we have two rational fractions p

q
and p′

q ′ where p, q, p′,q ′ are
coprime integers, then the next member of a Farey sequence
is generated according to median rule given as:

p

q
⊕ p′

q ′ = p + p′

q + q ′ . (6)

Therefore, if the fractions p

q
and p′

q ′ were neighbors in the Farey
sequenceFn−1, then they will be separated by the fraction p+p′

q+q ′

in the Farey sequence Fn, where (q + q ′) is smaller or equal
to n. Farey sequences can be defined between any two integers
k and k + 1 by translating the original Farey sequence along
the real number axis by the value of the integer k > 0.

Members of the Farey sequences can be represented using
the Stern-Brocot (SB) tree as shown in the Fig. 5. The SB tree
is an infinite complete binary tree which consists of all the
rational numbers between two given integers k and k + 1. The
connection between Farey sequences and the SB tree is that
the new members of the SB tree are created by the median rule
given in Eq. (6). The SB tree contains all the fractions which
belong to these Farey sequences. In Fig. 5, it is expanded up
to the fourth level, so that all members of F5 are present in
the tree. One can notice that in order to reach all the members
of the fifth Farey sequence, one must construct a tree with a
plethora of fractions, many of which belong to higher Farey
sequences. If we draw a vertical line passing through the only
node of the first level of the SB tree ( 3

2 ), and not through any
other node of the infinite binary tree, then such a line could be
considered a symmetry axis of the SB tree. Fractions that are
symmetric with respect to this axis have the same denominator
and they are arithmetically symmetric.
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In the devil’s staircase structure, the steps appear following
the continued fraction formula [15], which in the case of the
ac driven FK model can be written as:

v̄ =
⎛
⎝i ± 1

m ± 1
n± 1

p±...

⎞
⎠ων0, (7)

where i,m,n,p, . . . are positive integers. Harmonic steps are
presented by the first-level terms, which involve only i, while
the other terms involving other integers describe subharmonic
or fractional steps. Terms involving i and m are called
second-level terms, those with i, m, and n third-level terms, etc.
If we look the results in Fig. 3 and Fig. 4, then we can see that
the subharmonic steps 1

2 , 2
3 , 3

2 , 4
3 , . . . represent second-level

steps created by the formula i − 1
m

or (i − 1) + 1
m

for i = 2.
In Figs. 3(d) and 4(c), the steps 4

3 , 5
4 , 6

5 , 7
6 , . . . are sequences

of the third level, while in Fig. 4(d), the fractions of the fourth
level 9

7 , 14
11 , 19

15 , . . . are clearly visible. An increase in resolution
reveals more and more subharmonic steps, belonging to higher
levels of continued fractions. Therefore, the average velocity
as a function of average driving force exhibits the devil’s
staircase of infinite but countable steps (resonances), which
can be reproduced by continued fractions formula in Eq. (7).
Between any two steps there is an infinity of steps, and it is this
property that has given rise to the name “the devil’s staircase”
[34]. This progressive generation of subharmonic steps within
devil’s staircase is a manifestation of its self-similarity [15].

In frequency-locking systems, the locking appears at an
infinity of driving frequencies, giving rise to steps with a
characteristic scaling dimension; the so-called fractal dimen-
sion between 0 and 1 [34]. In the dynamical-locking of the
FK model, the fractal dimension has been calculated for
different system parameters. To investigate the completeness
of the staircase, we consider the region between the first
and the second harmonics whose length can be written as
L = min F2dc − max F1dc, where min F2dc corresponds to the
value of dc force where the second harmonic appears, while
max F1dc marks the end of the first harmonic step. If we
measure the total length S(l) of all steps larger than l, where l is
taken arbitrary, then the missing intervals between the steps
have total length L − S(l). We define N (l) as this length mea-
sured in the scale l, i.e., N (l) = [L − S(l)]/l. For complete
locking lN → 0 as l → 0:

N (l) ∼
(

1

l

)D

, (8)

where D represents the fractal dimension.
If we consider the the results in Fig. 2, then for that region

of parameters and accuracy, we obtain the fractal dimension
D presented in Fig. 6. For smaller deformations r = 0.01 or
0.25, it changes around 0.87, which is presented by a dashed
line in Fig. 6, while the further increase of r causes a definite
decrease of the fractal dimension, as can be seen for r = 0.5.

An example of our calculation of the fractal dimension
(for a small deformation r = 0.01, for which the FK model
is very close to the standard model) is presented in Fig. 7.
Here log10[N (l)] as a function of log10( 1

l
) is plotted with

the corresponding staircase structure between the first and the
second harmonics (in the inset).

FIG. 6. Fractal dimension D as a function of the ac amplitude
Fac for K = 4, ν0 = 0.2, ω = 1

2 ; the force step �F = 10−5; and
r = 0.01,0.25 and 0.5 in (a), (b), and (c) respectively. The dash line
marks the value D = 0.87.

The points are almost exactly linear, confirming the power-
low dependence given in Eq. (8), with the fractal dimension
D = 0.862.

IV. IN SEARCH FOR CHAOS

It is well known that dissipative dynamical systems with
competing frequencies can be described by the circle map,
which has a cubic inflection point. Depending on the strength
of the coupling, such systems will exhibit the devil’s staircase
and a transition to chaos [34–36]. When the coupling is

FIG. 7. Plot of log10 N (l) vs log10( 1
l
) for K = 4, ν0 = 0.2, ω = 1

2 ,
r = 0.01, and Fac = 0.25. The slope determines the fractal dimension
D. The inset shows the corresponding region between the first and
the second harmonic steps.

022210-5
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below some critical value, the staircase is incomplete, i.e.,
there are quasiperiodic intervals between the frequency locked
plateaus (steps) of periodic behavior. As coupling increases,
the frequency locked regions start to spread, and at some
critical value, they fill up all the space. The quasiperiodic
intervals have zero measure, and the devil’s staircase is said to
be complete. The most striking property of the devil’s staircase
is that, though the quasiperiodic intervals have zero measure,
they have nonzero fractal dimension (scaling index) which is
universal, i.e., the same D = 0.87 for all the systems (at least
for those described by the circle map with a cubic inflection
point), and thus often considered as a constant of nature [34].
The mechanism leading eventually to chaos is the interaction
between different resonances caused by the nonlinear coupling
and overlapping of resonant regions when coupling exceeds
certain critical value.

However, the universality of this scenario as well as
the universality of the fractal dimension (D = 0.87) have
been questioned in the past few years. Numerous theoretical
and experimental studies in the wide range of biological,
chemical, and physical systems have been devoted to models
showing the occurrence of entire nonchaotic regions with
complete phase locking [40–43]. Nonchaotic transition from
quasiperiodicity to complete locking [40] and deviation from
the universality with fractal dimension varying from 0.64 to
0.98 have been observed [42,44]. In those systems, transition
to complete locking is separated from the transition to chaos,
and these nonchaotic systems with two competing frequencies
will exhibit a strong mode-locking structure with a scaling
properties similar to those of a quasiperiodic systems near
transition to chaos [41]. The classic scenario of transition to
chaos via the usual mechanism of resonance overlap has been
also questioned. The chaotic dynamics does not appear due to
locking on invariant torus but rather due to the map developing
two extrema [45].

A. The overdamped Frenkel-Kontorova model

In order to examine chaotic behavior, we will apply the
largest Lyapunov exponent (LE) computational technique and
extend our examination to a very high resolution and wider
range of parameters, the ac amplitudes in particular. As in our
previous work [33], for the calculation of the largest Lyapunov
exponent we use the technique given in Ref. [46]. In Fig. 8,
the largest Lyapunov exponent for the standard FK model
(r = 0) is presented as a function of driving force for very
high values of the ac amplitude. Each negative minima of
the LE corresponds to the step, i.e., resonance in the plot
v̄(F̄ ) for the same values of driving force. These results
clearly show the absence of chaos since the LE remains
always negative regardless of the applied force. In our search
for chaos, the other methods have been also applied. The
same conclusion was reached independently by performing
the full spectrum calculation [47] at a variety of parameter
combinations. The other technique, such as the calculation of
the smallest alignment index (SALI) [48,49] also confirmed
the absence of chaos.

The absence of chaos in the ac driven overdamped FK
model can be attributed to the dissipative character of the
system and the Middleton no-passing rule [50,51]. According

FIG. 8. The largest Lyapunov exponent as a function of the ac
amplitude K = 4, ν0 = 0.2, ω = 1

2 , and Fac = 1.5, 1.8, and 10 in (a),
(b), and (c), respectively.

to this rule which applies strictly on overdamped systems,
the order of particles must be preserved in dynamics or, in
other words, the particles cannot jump over each other while
they move. In such case, there could be no overlapping of
resonances which is the main cause of the chaotic behavior in
frequency-locking systems [16,34–36]. Also, while in many
systems the increase of the ac amplitude leads the system to
chaos [15,16,37,38], it could also have completely opposite
effect: The increase of the ac amplitude to very high values
decouples particles turning the model into a system of free
particles in which case there can be no chaotic behavior.

B. The system of Josephson junctions

Numerous experimental and theoretical works on chaos
have been performed in physical systems related to the
Frenkel-Kontorova model [5]. (A good overview of the past
studies can be found in Ref. [15,16] and references therein.)
Structured chaos in the devil’s staircase has been recently
observed both in numerical simulations of the single Josephson
junction [15,16] and 1D stacks of of intrinsic Josephson
junctions, irradiated by electromagnetic waves [52]. There,
as in the present work, the resonant dynamics is characterized
by the existence of a devil’s staircase, where the heights of the
steps may be determined by the continued fraction formula. In
the system of Josephson junctions, the subharmonic steps were
separated by structured chaotic windows. One of the system
parameters which played a key role as a control parameter for
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FIG. 9. I -V characteristics and corresponding maximal Lya-
punov exponent for a stack of seven intrinsic Josephson junctions,
simulated from Eqs. (9), with N = 7, α = 0.1, A = 0.8, ωrf = 0.5,
and at two different values of dissipation parameter β = 0.3 and 0.8
in (a) and (b), respectively. The dashed lines correspond to the zero
value of LE, while the arrows in (b) indicate the chaotic regions that
appear between adjacent Shapiro steps.

the onset of the structured chaos was the ac amplitude of the
external radiation [15,16,37,38].

In this section, we will perform a comparative analysis of
the present system in comparison to the chaotic behavior that
has been studied in 1D stacks of intrinsic Josephson junctions
under external radiation. The dynamics of the latter system is
described by the coupled equations:

V̇l = I − sin ϕl − βϕ̇l + A sin(ωrft), (9a)

ϕ̇l = Vl − α(Vl+1 + Vl−1 − 2Vl), (9b)

where ϕ is the phase difference, α is the capacitive coupling
between junctions, and β represents the damping (dissipation)
parameter, while A and ωrf are the amplitude and frequency of
external radiation, respectively. Linearization of the uncoupled
(α = 0) equations shows that the system is underdamped
for β < 2, critically damped for β ≈ 2, and overdamped
for β > 2.

Previously, the current-voltage (IV ) characteristic of this
system was studied in the underdamped case [52]. Over a
certain range of parameters, the system was found to contain a
devil’s staircase, interspaced with self-similar chaotic windows
that preserve the scaling properties of the complete staircase
[52]. In the present work we employ the Lyapunov exponent
(LE) computational technique from Ref. [47] to examine the
chaotic behavior of the system at different levels of damping.
In Fig. 9, the IV characteristic and the corresponding values
of the maximal Lyapunov exponent are presented for the
stack of N = 7 Josephson junctions at two different values
of dissipation parameter. By comparing the values for the LE
in Figs. 9(a) and 9(b), one can clearly see that an increase
of dissipation significantly reduces the tendency for chaos to
occur in this system.

Extending further our analysis to wider range of dissipation,
the maximal Lyapunov exponent, as a function of the dc bias

FIG. 10. Maximal Lyapunov exponent as a function of the bias
current I and damping parameter β, for the stack of seven junctions.
All other parameters are the same as in Fig. 9.

current I and the damping β, is presented in Fig. 10. The
black regions in Fig. 10 correspond to zero LE and, therefore,
the absence of chaos. Notice that in this system the maximal
LE is always positive, or else zero, because in any continuous
time-dependent dynamical system without a fixed point there
is a zero exponent corresponding to the slowly changing
magnitude of a principal axis tangent to the flow [47].

The results in Figs. 9 and 10 clearly demonstrate the
disappearance of chaotic behavior in the 1D stack of Josephson
junctions with increasing dissipation. It is important to point
out that the FK model studied here has many degrees of
freedom, as does the Josephson junction systems. Thus the
absence of chaos in the overdamped FK model cannot be
ascribed to a reduction in the effective dimensionality of the
system.

V. RELATIVE SIZES OF SHAPIRO STEPS

In this section, we will examine the relative sizes of the
Shapiro steps and the critical depinning force. The Stern-
Brocot tree presented in Fig. 5 provides another insight into
the steps widths as follows: subharmonic Shapiro steps which
appear in lower branches of the SB tree have smaller size
than steps belonging to higher branches. By lower and higher
branches of the tree we are addressing the branches that are
further or closer to the root of the tree 3

2 , respectively. This
rule, combined with the rule of denominator increase, governs
the step widths, i.e., steps are smaller if denominator is larger,
and if they belong to lower branches.
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FIG. 11. Critical depinning force Fc and the width �F of first
harmonic Shapiro step 1

1 as a function of the ac amplitude Fac for K =
4, ν0 = 0.2, ω = 1

2 , and different values of deformation parameter
r = 0.01,0.25, and 0.5 in (a), (b), and (c) respectively.

1. Harmonic steps and the critical depinning force

The critical depinning force and the width of first harmonic
Shapiro step as a function of the ac amplitude Fac for different
deformations of the substrate potential are shown in Fig. 11.

Critical depinning force in the ac+dc driven Frenkel-
Kontorova model is the uniform force necessary for the system
of particles to exhibit collective motion [23]. It is well known
that the size of the first harmonic step and critical depinning
force exhibit Bessel-like oscillations where maxima of one
curve correspond to minima of another [21].

It was shown previously [31] that as deformation increases,
the system evolves through different types of amplitude
dependence. For small deformation r = 0.01 in Fig. 11, we
have typical standard behavior where the first harmonic step
and the critical depinning force oscillate in counterphase,
i.e., minima of one curve corresponds to the maxima of
another. As deformation increases for r = 0.25 and r = 0.5,
the oscillations get into phase and the Bessel form is lost
(oscillations became anomalous where the third lobe is higher
than the second, etc.).

2. Half-integer step 3
2

According to the Farey construction, the first subharmonic
step that appears between the first and second harmonics is the
half-integer step 3

2 . The influence of the ac amplitude on its
size is presented in the Fig. 12.

The steps with a higher denominator should have the
smaller relative sizes than the steps with lower denominator
[32]. This implies that the largest subharmonic step in the
region between the first and the second harmonics is the
step 3

2 . In contrast to that rule of descending step size with

FIG. 12. The width �F of the halfinteger Shapiro step 3
2 as a

function of the ac amplitude Fac. The rest of parameters are the same
as in Fig. 11.

the ascending denominator value, in Figs. 11 and 12, when
r = 0.25 the size of the step 3

2 can be larger than the size of the
first harmonic. As we can see from Fig. 12, even at the smallest
value of deformation parameter r = 0.01, the oscillations do
not have Bessel-like form since the maxima of oscillations
do not decrease monotonously (the third maximum is lower
than the fourth one). It appears that this property which was
apparent at the oscillations of the first harmonic is lost as we
progress to higher Farey sequences.

At the value of deformation parameter r = 0.25 for which
the width of the step 3

2 is greater than the width of the step 1
1 ,

clear Bessel-like oscillations of the step 3
2 are present while

the first harmonic exhibits anomalous oscillations. Based on
this observation, we conclude that Bessel-like oscillations of
the steps, at deformation parameter r = 0.25, will appear
only at the more pronounced step of the two. If the system
is subjected even to the higher deformation parameter r =
0.5, then the both steps (harmonic and fractional) exhibit
anomalous oscillations.

3. Subharmonic steps 4
3 and 5

3

Two new steps emerge once we progress to the higher Farey
sequence F3 or the lower level of the SB tree. These are the
steps 4

3 and 5
3 which represent a symmetric pair on the SB tree

in Fig. 5. The amplitude dependence of subharmonic steps 4
3

and 5
3 at different deformations of the substrate potential is

shown in the Fig. 13.
In the standard case or when deformation is small r =

0.01, both steps 4
3 and 5

3 have the same size at the small ac
amplitudes. As Fac increases to the higher values, the steps start
to oscillate in counter phase (the maxima of one corresponds
to the minima of another), and they are of the same magnitude
compared to each other. As deformation increases to r = 0.25,
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FIG. 13. The width �F of the Shapiro step 4
3 and 5

3 as a function
of the ac amplitude Fac. The rest of parameters are the same as in
Fig. 11.

the symmetry between subharmonic steps 4
3 and 5

3 disappears.
Though both steps belong to the same level of the SB tree in
Fig. 5, there is a clear dominance of the step 5

3 over the step
4
3 in lower range of Fac. As in the standard case for r = 0.01,
further increase of the ac amplitude will induce oscillatory
behavior where steps oscillate in counter phase with the similar
magnitudes. When the substrate potential deviates greatly from
the perfectly symmetric sinusoidal potential such as for r =
0.5, the region of Fac in which the step 5

3 dominates the step
4
3 is spread to the higher amplitudes. For larger amplitudes
Fac > 1, both steps again oscillate in counter phase with the
significant increase in magnitude of oscillations with Fac. As
in the case for fractional step 3

2 in Fig. 12, we can see that in
Fig. 13 the size of steps is the smallest in the standard case
when r = 0.01, it reaches the largest values at r = 0.25, and
declines as r is increased to r = 0.5.

According to these results it is obvious that the asymmetry
of the substrate potential favors some steps as it was indicated
in Ref. [33]. However, this favorable pronunciation is limited
to a lower range of Fac after which, at the higher amplitudes,
the steps seem to be equally influenced by the amplitude of
the oscillatory force.

4. Subharmonic steps 5
4 and 7

4

Farey sequence F4 differs from F3 by two fractions: 5
4

and 7
4 . These two steps are on the third level of the SB

tree, and they are symmetric to the vertical axis of the tree.
Amplitude dependence of subharmonic steps 5

4 and 7
4 for

different deformation of substrate potential is presented in
Fig. 14. Again, at small deformation r = 0.01, the steps are
similar to each other in size, and only in this case, the maximum
of the first lobe is larger than other maxima. Though the steps

FIG. 14. The width �F of the Shapiro step 5
4 and 7

4 as a function
of the ac amplitude Fac. The rest of parameters are the same as in
Fig. 11.

oscillate there is no similarity with the Bessel-like oscillations
which appears to be lost with the increase in denominator.
This degradation of the Bessel-like shape is followed by
an increase in the oscillation complexity. It seems that the
Bessel-like shape of oscillations becomes more distorted
(more anomalous) as the denominator of the steps increases,
which could be attributed to the significant decrease of the
absolute widths when compared to other subharmonic steps
with smaller denominator.

Increase in deformation to the values r = 0.25 and r = 0.5
induces a clear pronunciation of the step 7

4 in the region of
low amplitudes Fac. As in the case with the steps whose
denominators were equal to 3 in Fig. 12, only the step with
the higher numerator is present in the first region. Both
steps 5

3 and 7
4 belong to the right-hand side of the SB tree.

Dominance of only some subharmonic step from the same
level of SB tree is not present in the standard case or at the small
deformations such as r = 0.01, and, thus, it is surely induced
by the increase in asymmetry of the substrate potential. As
amplitude increases, in the second region, the steps start to
oscillate becoming comparable in magnitude.

5. Subharmonic steps 6
5 , 7

5 , 8
5 , and 9

5

With further increase in the denominator value, there are
four possible irreducible fractions between 1 and 2: 6

5 , 7
5 , 8

5 ,
and 9

5 . Each of these fractions is a member of the F5 Farey
sequence, and we have observed subharmonic Shapiro steps
which correspond to the complete F5 sequence. Unlike the
subharmonic steps which we presented so far, the transition
from F4 to F5 creates fractions which do not belong on the
same level of the SB tree.
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FIG. 15. The width �F of the Shapiro steps of subharmonic
Shapiro steps with denominator being equal to 5 as a functions of the
ac amplitude Fac. The rest of parameters are the same as in 11.

Amplitude dependence of each subharmonic step with
denominator equal to 5 for different deformation of the
substrate potential is shown in Fig. 15. The left-hand side
of the figure compares the steps 8

5 and 7
5 which are in the third

level of the SB tree, while the right-hand side compares the
steps 6

5 and 9
5 from the fourth level. Both comparisons are

performed on the steps which form a symmetric pair, i.e., they
are symmetric to each other in respect to the vertical axis of
the SB tree.

In the standard case when deformation is small r = 0.01,
the side-by-side comparison in the Fig. 15 shows that the
steps which form a symmetric pair on the SB tree have similar
sizes and similar amplitude dependence. As deformation of the
potential increases, for r = 0.25 and r = 0.5, only two of the
four steps are present in the first region of small Fac. These are
the steps with higher numerator 8

5 and 9
5 . The step 9

5 is greater
in magnitude than the step 8

5 in this range of Fac, implying
that the larger the numerator the larger the step with the same
denominator. As amplitude increases, in the second region, all
four steps are equally pronounced, where the steps from the
same symmetric pairs of the SB tree have similar sizes. We
can clearly see in Fig. 15 that in the standard case (r = 0.01)
the steps 7

5 and 8
5 from the third level of SB tree are larger

than the steps 6
5 and 9

5 from the fourth one. However, this is
not the case when potential becomes deformed; for r = 0.25
and r = 0.5 the steps 6

5 and 9
5 from the fourth level of the SB

tree are much larger than the steps 7
5 and 8

5 from the third one.
The presented results in Figs. 11–15 clearly show that

relative sizes of the steps do not necessarily follow the Farey
rule. If we look for instance the steps 4

3 in Fig. 13 and 7
4 in

Fig. 14, contrary to the Farey rule, the step 7
4 is larger than

the step 4
3 when potential is deformed which is particularly

obvious in the first region of Fac. Similar examples could be
found also for other subharmonic steps ( 9

5 can be larger than
5
4 , even 4

3 ).

6. Breaking of symmetry

From the presented results it has become clear that all
subharmonic Shapiro steps can be described in a somewhat
similar manner. Namely, depending on the deformation of the
potential for all subharmonic steps we could distinguish two
different regions in their dependence of the ac amplitude:

(i) The first region or the low-amplitude region corresponds
to the first lobe or the first maximum of the step size in
Figs. 11–15. In the standard case, in this region, the subhar-
monic steps which form the symmetric pair on the Stern-
Brocot tree have the same size. With the increase of defor-
mation, however, the one with the larger numerator becomes
dominant. This region spreads to the higher amplitudes as
deformation increases.

(ii) The second or oscillatory region corresponds to the
higher ac amplitudes. In this region, both members of each
symmetric pairs in SB tree oscillate in counterphase with the
similar magnitudes.

Therefore, in the FK model with asymmetric deformable
potential, increase of deformation breaks the symmetry of the
Stern-Brocot tree in a way that in the first region, at the lower ac
amplitudes, the steps from the right-hand side of the SB tree are
clearly pronounced in favor of those from the left-hand side.
In the second region with the increase of the ac amplitude,
this symmetry is again established. There is no indication that
there are limitations on the upper bound of the range of the
second region.

VI. CONCLUSION

In this work, a high-resolution numerical analysis of the
Frenkel-Kontorova model driven by time periodic forces has
been made. We have shown the presence of a devil’s staircase
in the average velocity as a function of the average driving
force. The hierarchical ordering of the Shapiro steps has
been presented in terms of continued fraction formula, and
the fractal dimension has been calculated. However, contrary
to the well-known scenario from the circle map, where
the staircase only becomes complete immediately before
the onset of chaos, no chaotic behavior has been detected.
The absence of chaos is a result of the overdamped character
of the FK model and, above all, “the Middleton no-passing
rule.” The comparative study of the 1D stacks of intrinsic
Josephson junctions irradiated by electromagnetic waves has
confirmed the disappearance of chaos as the system becomes
overdamped. Other common dynamical features have also
been identified through this comparison. A detail examination
of the amplitude dependence of the Shapiro steps has revealed
that only for the case of a purely sinusoidal substrate potential
do the relative sizes of the steps follow a Farey sequence.
As the substrate potential becomes deformed, the symmetry
of the Stern-Brocot tree, depicting all members of particular
Farey sequence, becomes increasingly broken; certain steps
being more prominent, and their relative sizes not following
the Farey rule.
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This work could be important to all frequency locking
systems, but particularly to those related to the overdamped
Frenkel-Kontorova model, such as charge- or spin-density
wave systems, vortex latices, and the systems of Josephson-
junction arrays [21]. Shapiro steps and interference phe-
nomena are significant for technological applications and,
therefore, situations in which the parameters should be set
to produce desired dynamical effects without evoking chaos
are a common engineering problem [38]. In voltage standards
or other applications, both quasiperiodic and chaotic behavior
must be avoided; however, surprisingly, the optimum operating
region is actually near the onset of chaos. Therefore, further
comparative studies of the resonance phenomena in the
Frenkel-Kontorova model and other physical systems, partic-
ularly experiments, would be very interesting. A comparative

study of the chaos in the underdamped FK model and coupled
Josephson junction systems is underway and will be published
separately.
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[21] J. Tekić and P. Mali, The ac Driven Frenkel-Kontorova Model
(University of Novi Sad, Novi Sad, 2015).

[22] L. M. Floría and F. Falo, Phys. Rev. Lett. 68, 2713 (1992).

[23] F. Falo, L. M. Floría, P. J. Martínez, and J. J. Mazo, Phys. Rev.
B 48, 7434 (1993).

[24] L. M. Floría and J. J. Mazo, Adv. Phys. 45, 505 (1996).
[25] A. Zettl, C. M. Jackson, and G. Grüner, Phys. Rev. B 26, 5773

(1982).
[26] S. Sridhar, D. Reagor, and G. Grüner, Phys. Rev. Lett. 55, 1196

(1985).
[27] P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D. Zaikin,

and G. Schön, Phys. Rev. B 63, 064502 (2001).
[28] B. Hu, W.-X. Qin, and Z. Zheng, Physica D 208, 172 (2005).
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