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Abstract Results — Quantum Harmonic Oscillator Basis Set

In this work we present closed-form expressions for different types of Gaussian integrals that
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occur when evaluating the Winger function in a given basis. Wigner function represents a phase oe 1 « —
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Wigner Quasiprobability Distribution — Definitions 2
B Definition: A function which provides a connection between the wavefunction B Wigner function is evaluated exactly below for different basis coefficients C',
W () (where £ € R?, and is an element of the Hilbert space) defined by where n = 0,1,...Z and Z = 10
the stationary Schrodinger equation HW = EW to the probability > Coy = 1, while Cp, .0 = 0 (upper left),
distribution in the phase space which depends on the position @ and its > C; = 1, while C}, 9 = O (upper right),
conjugate, the momentum p. It reads > C3 = 1, while C, 9 = O (lower left),
;% » {Cy,...,C0} ={1,6,1,8,0,3,3,9,8,8} golden mean (lower right)
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where C,, are the coefficients, and Z is the number of elements. IO ; | q |O s
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Different Basis Sets - One-dimensional Examples 0.2 0.9
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H,(x) = (—1)new2dd—mne_m . (4) Figure: Heatmap of W (q, p) for different cases. We fix @ = 1.0 and A = 1.0. Purely

analytical evaluation, no numerical evaluation of integrals required.

/6\\ - B Wigner function integration over momentum and position

/ : \ W (p) =/W(q,p)dq, and W (q) =/W(q,p)dp. (8)
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Figure: First few states of the Harmonic oscillator basis when o« = 1. -
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B The distributed Gaussian basis set reads
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T Figure: Wefix o = 1.0, A = 1.0 and Z = 3 where we set all Cy and C,, to 1.
where p = 0,1, 2, ..., Z, 2 € R, x,, denotes the shift in the position of Numerical (red dots) vs analytical (blue line) evaluation of W (p) (left) and W (q) (right).

the particular Gaussian and A, is a normalizing constant.

\ / Results — Distributed Gaussian Basis Set
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Figure: Examples of distributed (shifted) Gaussians of equal amplitude and width. Conclusion

B We obtained closed-form expressions for the Wigner function for two different
and commonly used orthonormal basis sets. Exact expressions have a wide
scope of applications in physics and chemistry.

» Both basis set examples feature a Gaussian and in order to evaluate the
Wigner function in Eq. (1) we resort to multiple and different variable
transformations, completing the square and the binomial expansion

B These results open the door to treating anharmonicities using methods such

(z + y)" = i n z" kb (6) V.ibratic.DnaI .Self—Consistent Field (VSCF) approximation of increasing
P— k dimensionality.
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