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Abstract

Entanglement is recognized as a primary resource for quantum advantage. We explore the

resilience of various kinds of entanglement in the ground state of a local Hamiltonian against

the application of random local unitaries, acting at most on two neighboring sites of a 1D spin

chain. We distinguish two classes of operations, depending on whether they preserve or not the

symmetries of the Hamiltonian. The latter are more efficient in destroying the entanglement,

but also change its nature by making it more complex. Adding topological frustration to the

chain adds additional, non-local entanglement, which cannot be completely destroyed by the

local unitaries. Our work highlights a subtle interplay between locality and non-local constraint.

Model and Physics – Transverse-field Ising model (TFIM)

■ We consider a minimal model with non-extensive geometrical frustration

H = J
N∑
j=1

σx
jσ

x
j+1 − h

N∑
j=1

σz
j (1)

▶ assume PBC σx
N+1 = σx

1 with and odd number of spins N = 2M + 1 (M ∈ Z),
with antiferromagnetic coupling → Frustrated Boundary Conditions (FBC) [1]

■ Classical non-extensive geometric frustration

▶ 2N degenerate ground-state manifold at h = 0, while in quantum regime h ̸= 0 lifted

degeneracy and the TD limit N → ∞ gapless spectrum

■ To quantify the entanglement we use the bipartite Rényi-2 entropies

S(ρA) = − log Tr
[
ρ2A

]
, (2)

▶ where ρA = TrAc|ψ⟩⟨ψ| is the reduced density matrix, {λi}2N/2

i=1 we denote the ordered

set (decreasing order) of eigenvalues.
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Figure: Half-chain Rényi-2 entropy. Inset: Comparison between area/volume law expectation
of entropy for N = 21 at J/h = 2.5 for subsystem size ratio f = R/N .

Method - Entanglement cooling stochastic circuit

■ Simulated annealing Metropolis Monte Carlo algorithm that targets to
disentangle the TFIM ground-state → if we can not destroy entanglement
we say the state is ROBUST (STOCHASTIC IRREVERSIBILITY)! [2]

|Ψinitial⟩

|Ψfinal⟩

- local gate hj,j+1

Acceptence probability: min{1, exp(−∆S̄α/T )}

Averaged Rényi ∆S̄α = S̄new
α − S̄old

α

Temperature gradient T ∈
[
10−4, 10−8

]

|ψnew⟩ = exp(ihkj,j+1∆t)|ψold⟩

Gate set 1 Gate set 2

h1
j,j+1 = σzj ⊗ Ij+1 + Ij ⊗ σzj+1 h

4
j,j+1 = σxj ⊗ Ij+1 + Ij ⊗ σxj+1

h2
j,j+1 = σxj ⊗ σxj+1 h5

j,j+1 = σyj ⊗ Ij+1 + Ij ⊗ σyj+1

h3
j,j+1 = σyj ⊗ σyj+1 h6

j = σzj ⊗ σzj+1

■ Gate set 1 → not complete (non-universal)
■ Gate set 1 + 2 → complete set (universal)

Results 1 – Disentanglement slow-down, extensive irreversibility
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Figure: Averaged rescaled Rényi-2 entropy during the entanglement cooling over M = 102

Metropolis MC trajectories. Left: unfrustrated system J/h = −2.5 in the ferromagnetic
(FM) regime; Right: frustrated system J/h = 2.5 in the antiferromagnetic (AFM) phase.
Superimposed (silver line) we see a single MC trajectory for each of the system sizes. Universal
set of gates used.
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Figure: Averaged rescaled Rényi-2 entropy during the entanglement cooling over M = 102

Metropolis MC trajectories with different system size in the frustrated regime (J/h = 2.5).
Inset shows the scaling of the plato size of the entanglement during the cooling (blue dots). The
plato is an exponential function of the system size. In red is an exponential function fit. Universal
set of gates used.

Results 2 – Entanglement spectrum, consecutive spacing ratio P (r)

10−1 100 101

r

10−3

10−2

10−1

100

P
(r

)

r̄ ≈ 0.39

r̄ ≈ 0.59

unfrustrated

frustarted

Poisson

GUE

102 103 104 105

MC steps

0.25

0.50

0.75

r̄

Poisson

GUE

Figure: Entanglement spectrum eigenvalue differences of the unfrustrated (J/h = −2.5)
vs frustrated (J/h = 2.5) state for the system size N = 17 after the application of the
cooling algorithm for 105 steps with M = 102 realizations. Th spacing is defined ri =
(λi+1 − λi)/(λi − λi−1). The predictions from RMT are given with lines. Inset show the
average consequetive spacing ratio with variable Metropolis MC steps for the frustrated system of
sizeN = 17. The Random Matrix Theory (RMT) provides predictions r̄Poisson = 2 ln 2−1 ≈
0.386 and r̄WD = 2

√
3/π − 1/2 ≈ 0.602. Universal set of gates used.
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Figure: Entanglement cooling performed with different set of unitary gates. Left panel : Averaged
rescaled Rényi-2 entropy forN = 13,M = 102 and J/h = 2.5. Clear difference is observed.
Right panel : Consecutive spacing ratio of the entanglement spectrum for the two sets of gates
(non-universal vs universal).

Conclusion

■ Stark difference between unfrustrated vs frustrated regime, and extensive
slow-down of entanglement destruction!

■ Entanglement spectrum complexity signature between non-universal and
universal!

■ Used Graphical Processing Units (GPU) to perform efficient calculations [3]
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