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The largest Lyapunov exponent has been examined in the dynamical-mode locking phenomena of the ac+dc
driven dissipative Frenkel-Kontorova model with deformable substrate potential. Due to deformation, large
fractional and higher order subharmonic steps appear in the response function of the system. Computation of
the largest Lyapunov exponent as a way to verify their presence led to the observation of the Farey sequence.
In the standard regime, the appearance of half-integer and other subharmonic steps between the large harmonic
steps, and their relative sizes follow the Farey construction. In the nonstandard regime, however, the half-integer
steps are larger than harmonic ones, and Farey construction is only present in the appearance of higher order
subharmonic steps. The examination of Lyapunov exponents has also shown that regardless of the substrate
potential or deformation, there was no chaos in the system.
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I. INTRODUCTION

In the examination of Shapiro steps, finding the best method
or tool to verify their presence has been the matter of many
studies in various physical systems. Numerous theoretical and
experimental results on Shapiro steps obtained in dissipative
systems such as charge- or spin-density wave conductors
[1–4], the systems of Josephson junction arrays [5–7], and
superconducting nanowires [8,9] have been the main impulse
and motivation for our studies of the ac+dc driven overdamped
(dissipative) Frenkel-Kontorova (FK) model [10]. It is well
known that when these systems are subjected to an external
ac driver, their dynamics is characterized by the appearance of
Shapiro steps. These steps are due to interference phenomena
or dynamical mode locking (synchronization) of the internal
frequency with the applied external one. If the locking appears
at the integer values of the external frequency, the steps are
called harmonic, while for the locking at rational (noninteger)
values of frequency they are called subharmonic.

In realistic systems due to presence of noise, impurities,
and other environmental effects, detection of Shapiro steps,
particularly the subharmonic ones, is usually very difficult. On
the other hand, in theoretical works, their observation could
also be a problem since their size is often so small that they are
invisible on the regular plot of the response function. One of the
most sensitive ways to verify the existence of Shapiro steps is
the calculation of the largest Lyapunov exponent [11]. Always
when the system is dynamically mode locked, the largest
Lyapunov exponent has negative values [12,13]. Therefore,
an examination of the largest Lyapunov exponent for some
interval of driven force will precisely reveal the presence of
any harmonic or subharmonic mode locking.

Calculation of the largest Lyapunov exponent has been
already used as a way to examine the existence of subhar-
monic Shapiro steps in the standard FK model [12,13]. The
standard Frenkel Kontorova (FK) model represents a chain
of harmonically interacting particles subjected to a sinusoidal
substrate potential [10]. It describes different commensurate
or incommensurate structures that, under an external driving

force, show very rich dynamical behavior. In the presence of
an external ac+dc driving force, the dynamics is characterized
by the appearance of the staircase macroscopic response or
the Shapiro steps in the response function v̄(F̄ ) of the system
[12–14]. Though the standard FK model has been very success-
ful in the studies of some effects related to Shapiro steps, its
application is still very restricted. Namely, in the standard FK
model, the subharmonic steps either do not exist in the case
of commensurate structures with integer values of winding
number [15,16] or their size is so small that analysis of their
properties is very difficult [12–14]. The absence of subhar-
monic steps for the commensurate structures with integer value
of winding number, and their presence in the case of rational
(noninteger) winding number, was confirmed by the calcula-
tion of the largest Lyapunov exponent [13]. However, contrary
to the standard case, the large subharmonic steps can appear in
any commensurate structure of the nonstandard FK model such
as the one with the asymmetric deformable substrate potential
(ASDP) [17]. This potential belongs to the family of nonlinear
periodic deformable potentials, introduced by Remoissent and
Peyrard [18] as the way to model many specific physical
situations without employing perturbation methods.

In this paper, by using the largest Lyapunov exponent
computation technique, we examine the appearance of both
harmonic and subharmonic steps in the FK model with
assymetric deformable potential (ASDP). In the analysis of the
largest Lyapunov exponent, we have observed one interesting
property: the Shapiro steps and their relative sizes appear
according to the Farey construction only in the standard
regime when large harmonic steps are dominant in the response
function. The paper is organized as follows. The model and
methods are introduced in Sec. II, and the results are discussed
in Sec. III. Finally, Sec. IV concludes the paper.

II. MODEL AND METHODS

We consider the dissipative (overdamped) dynamics of a
series of coupled harmonic oscillators ul subjected to the
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FIG. 1. (Color online) Particles moving in asymmetric de-
formable potential for ω = 1

2 ,K = 4, and two different values of
the shape parameters, r = 0 and r = 0.5. Particles are represented by
red dots.

ASDP:

V (u) = K

(2π )2

(1 − r2)2[1 − cos(2πu)]

[1 + r2 + 2r cos(πu)]2
, (1)

where K is the pinning strength, and r is the shape or
deformation parameter (−1 < r < 1) which can be varied
continuously. By changing the shape parameter r the potential
can be tuned in a very fine way, from the simple sinusoidal
one for r = 0 to a deformable one for 0 < r < 1. In Fig. 1,
the commensurate structure ω = 1/2 in the ASDP is presented
for two different values of the shape parameter, r = 0 and r =
0.5 (for more details see [17,19]). The average interparticle
distance ω = 〈ul+1 − ul〉, or the so-called winding number, is
one of the main parameters that describes the FK model. The
system exhibits a commensurate phase for rational values of
winding number ω, and an incommensurate phase for irrational
ones.

In the present paper, the system of coupled harmonic
oscillators in the ASDP is driven by the dc+ac forces F (t) =
F̄ + Fac cos(2πν0t). The equations of motion are

u̇l = ul+1 + ul−1 − 2ul − ∂V

∂ul

+ F (t), (2)

where l = −N
2 , . . . ,N

2 , ul is the position of the lth particle,
and F̄ is the dc force, where Fac and 2πν0 are the amplitude

and the circular frequency of the ac force, respectively. Since
the substrate potential is homogeneous (it does not depend
of the particle index l), relabeling of the position of particles
does not change the properties of the configuration [10]. When
the system is driven by an external ac+dc force, two different
frequency scales appear in the system: the frequency of the
external periodic force ν0, and the characteristic frequency of
the motion of particles over the ASDP driven by the average
force F̄ . The competition between those frequency scales can
result in the appearance of resonance (dynamical mode locking
or Shapiro steps).

Solution of the system (2) is called resonant if average
velocity ῡ satisfies the relation

v̄ = iω + ja

m
ν0, (3)

where the triplet (i,j,m) is made up of integer numbers. The
resonant velocity is called harmonic if m = 1 and subharmonic
if m �= 1. (In the case of ω = 1

q
we can use v̄ = i

m
ων0 for

marking harmonic and subharmonic steps.) Parameter a is the
period of the potential V (u), and in the case of no deformation
a = 1, and with deformation a = 2 as can be seen in Fig. 1.
For a rational value of ω = p/q (p and q are co-prime
integers) the triplet is not unique (this triplet is unique only
for incommensurate structures [10]). In this paper we consider
only the commensurate structure ω = 1/2.

The equations of motion (2) have been integrated by using
a fourth order Runge-Kutta method with periodic boundary
conditions. The time step used in simulations was 0.01τ ,
where τ = 1

ν0
. The force is varied adiabatically with the

step 10−5.
We focus on calculating the largest Lyapunov exponent λ

[13]. It is well known that the Lyapunov exponent gives a
quantitative measure of the presence of chaos in dynamical
systems [11]; however, it also proves to be extremely sensitive
to the existence of both harmonic and subharmonic Shapiro
steps. When the system is dynamically mode locked, i.e., on
the step, the trajectories of particles are periodic in time which
is reflected by the negative value of the largest Lyapunov
exponent. Outside the steps, where there is no onset of
dynamical mode locking, the trajectories are quasiperiodic,
which is confirmed by the zero of the Lyapunov exponent
[11,13]. We choose an appropriate perturbed point u′

l in our
computations according to

u′
l(tss) = ul(tss) ±

√
d2

0

N
, (4)

where tss is time when the steady state has been achieved in
our system, and d0 is the parameter that expresses the change
in the initial positions of particles of the model. In order to
make sure that projecting is always done onto the subspace
dominated by the largest Lyapunov exponent, the sign in front
of the square term in Eq. (4) is randomly selected where the
plus and minus sign appear with the same probability. We
sample and readjust following Sprott [20] every 25 or so time
steps. In our calculations, we used tss = 300τ and d0 = 10−7.
For convenience, in further text, the largest Lyapunov exponent
is denoted just as the Lyapunov exponent.

052904-2



FAREY SEQUENCE IN THE APPEARANCE OF . . . PHYSICAL REVIEW E 91, 052904 (2015)

III. RESULTS

In the present paper, the Lyapunov exponent is examined
for different deformations of the substrate potential. In Fig. 2,
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FIG. 2. (Color online) The Lyapunov exponent as a function of
the average force for commensurate structure ω = 1/2, K = 4, Fac =
0.2, ν0 = 0.2, and three different values of shape parameter (a) r = 0,
(b) r = 0.28, and (c) r = 0.6. The insets show the corresponding
response functions v̄(F̄ ).
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FIG. 3. (Color online) Lyapunov exponent as a function of av-
erage driving force for r = 0 (the rest of the parameters are as in
Fig. 2). The inset shows the response function v̄(F̄ ) drawn for the
same interval of force. This result is obtained in [13].

the Lyapunov exponent as a function of the driving force
for three different values of deformation parameter is pre-
sented. The insets show the corresponding response functions
v̄(F̄ ) (the average velocity as a function of average driving
force). As one can see, the computed Lyapunov exponents
are always λ � 0, which implies that with the change of
deformation r we have not introduced chaos in our system (the
presence of chaos would result in positive values of Lyapunov
exponent). The domain of F̄ in Fig. 2, for which we calculated
the exponent, differs with r due to the fact that for different
values of r the same steps appear in different regions of F̄

(see [17,19]). In the standard case in Fig. 2(a), we can see
the large minima which correspond to harmonic steps and for
which size changes monotonically. As deformation increases
in Figs. 2(b) and 2(c), the minima which correspond to the
large half-integer and higher order subharmonic steps appear
where the changing of their size is not monotonic any more.

Using Eq. (3), the Shapiro steps could be now identified.
It is well known that in the standard FK model (r = 0)
with integer value of winding number, there would be no
subharmonic mode locking [10] and, consequently, no steps
between harmonic ones on the plot of response function v̄(F̄ ).
On the other hand, when ω = 1/2, only the half-integer step
3/2 which appears between the first and the second harmonic
could be visible [13]. However, computation of the Lyapunov
exponent between the first and second harmonic steps reveals
other subharmonic steps as can be seen in Fig. 3. The areas
under the minima correspond to the size of the steps; i.e., for
a larger step, the area under the minimum will be larger. If we
examine the subharmonic steps in Fig. 3, we could see that
the first largest fractional step between step 1 and step 2 is
step 3/2. Then, the largest step between steps 1 and 3/2 would
be step 4/3 while the largest one between steps 3/2 and 2 is
5/3. Therefore, according to the appearance of fractional steps
between the first 1/1 and the second 2/1 harmonics we may
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FIG. 4. (Color online) Section of the Farey construction (repre-
sented as a rooted binary tree graph) (a) from 0 to 1 and (b) from 1 to
2 according to Eq. (7).

write the following sequence:

1
1 , 4

3 , 3
2 , 5

3 , 2
1 . (5)

This sequence of numbers represents the Farey sequence well
known in number theory [21,22].

The Farey sequence FN of order N is an ascending
sequence of irreducible fractions between 0 and 1, whose
denominators are less than or equal to N [21,22]. The first
few would be

F1 =
{

0
1 , 1

1

}
,

F2 =
{

0
1 , 1

2 , 1
1

}
,

F3 =
{

0
1 , 1

3 , 1
2 , 2

3 , 1
1

}
,

F4 =
{

0
1 , 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1
1

}
,

F5 =
{

0
1 , 1

5 , 1
4 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 3
4 , 4

5 , 1
1

}
.

(6)

Therefore, if we have two rational fractions in Farey sequence
p

q
(where p, q are co-prime integers) and p′

q ′ (where p′,q ′ are
co-prime integers), the rational fraction which lies between
them and has the smallest denominator is

p′′

q ′′ = p

q
⊕ p′

q ′ = p + p′

q + q ′ , (7)

where p′′, q ′′ are co-prime integers. This statement is trivially
extended to the case of the interval between 1 and 2, and further
on (Theorems 28 and 29 in [22]). The largest step between p

q

and p′
q ′ , if it exists, will be step p

q
⊕ p′

q ′ . The Farey sequence
could be easily understood from the diagram in Fig. 4.

For example, in the case of the FK model with the
integer value of winding number, there is no subharmonic
mode locking, which implies there is only one for the Farey
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FIG. 5. (Color online) Lyapunov exponent as a function of aver-
age driving force for r = 0.01 (the rest of the parameters are as in
Fig. 2). The inset shows the response function v̄(F̄ ) drawn for the
same interval of force.

sequence of order. However, if the winding number is a
rational noninteger such as the case ω = 1/2 in Fig. 3, one
can see that the largest step between harmonic steps 1 and 2
is the half-integer step 3/2. From set theory [22] we know
that between any two rational fractions lie countable many,
ℵ0 rational fractions and, therefore, countable many possible
Shapiro steps between any two harmonic steps in our model.

If the potential gets deformed, the large half-integer step
and higher order subharmonic steps appear [17,19]. Contrary
to the case r = 0 in Fig. 3, now for r = 0.01 in Fig. 5, the
large 4/3 and 5/3 steps are clearly visible. The higher order
subharmonic steps, such as 4/3 and 5/3 (to the left and to the
right), are appearing in a symmetric manner with respect to
step 3/2.

With the further increase of deformation r , the step widths
increase faster on the right side from half-integer step 3/2 than
on the left one as can be seen in Fig. 6.

It was shown in our previous work [19] that the sizes
of half-integer and subharmonic Shapiro steps increase with
deformation and, after reaching their maxima for some value
of r , decrease to zero. If we calculate the Lyapunov exponent
for r = 0.28, which is the value of r for which a half-integer
step reaches its maximum, we obtain the results presented in
Fig. 7. At this value of deformation some higher subharmonic
steps already start to disappear.

At large deformation of the potential, the size of half-integer
steps decreases, and the most of higher order subharmonic
steps have completely vanished [19]. This is confirmed by the
results in Fig. 8, where the Lyapunov exponent for r = 0.5
has been calculated. A disappearance of steps is also clearly
visible in Fig. 2.

Deformation of the potential obviously strongly affects the
steps as we can see in Figs. 6–8. It appears that, with the
increase of the deformation r , the right side of the Farey
construction is heavily favored over the left one. In particular,
we observe that at each level of our binary tree graph (Farey
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FIG. 6. (Color online) Lyapunov exponent as a function of aver-
age driving force for r = 0.05 (the rest of the parameters are as in
Fig. 2). The inset shows the response function v̄(F̄ ) drawn for the
same interval of force.

construction in Fig. 4) the child node (or step) that takes
preference is the one on the right. This means that with the
increase of the deformation the steps that are present and
become increasingly dominant are 3/2, 5/3, 7/4, and 9/5.

We have analyzed also systems with other types of
deformable potentials [23], such as variable, double barrier,
and double well potential, and we have been always able to
observe the appearance of steps in accordance with the Farey
construction [11]. Therefore, for two steps p

q
and p′

q ′ , the next
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FIG. 7. (Color online) Lyapunov exponent as a function of aver-
age driving force for r = 0.28 (the rest of the parameters are as in
Fig. 2). The inset shows the response function v̄(F̄ ) drawn for the
same interval of force.
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FIG. 8. (Color online) Lyapunov exponent as a function of aver-
age driving force for r = 0.5 (the rest of the parameters are as in
Fig. 2). The inset shows the response function v̄(F̄ ) drawn for the
same interval of force.

largest step between them will be p+p′
q+q ′ , where the denominator

determines the size of steps in terms that the size of steps
decreases as the denominator increases. It is important to note
that Farey construction tells us the order and the relative sizes
of steps but it does not tell us the actual step width or why they
appear [11].

It is well known that the sizes of harmonic and half-integer
steps are correlated, whereby the larger the size of harmonic
steps the smaller the size of half-integer steps and vice
versa [19,24,25]. In some cases, depending on the system
parameters, the size of half-integer steps could be even larger
than the size of harmonic ones [19]. The size of half-integer and
other subharmonic steps strongly affects the behavior of the
system, and, according to previous works [19,25], the three
different types of system behavior have been classified: the
standard behavior for small half-integer steps, the behavior
for intermediate half-integer steps, and the behavior in the
presence of large half-integer steps.

If we have two harmonic steps, according to the Farey
sequence the next largest step which appears between them is
the half-integer step, but this is not the case for nonstandard
behavior [19,25], since half-integer steps are larger than
harmonic ones. In such a case, could we still have the presence
of a Farey sequence? In Fig. 9, the response function in the
case of large half-integer steps is presented. It is obvious that,
in the nonstandard case, the relative sizes of harmonic and
half-integer steps do not follow the Farey construction, and
in going from harmonic to half-integer steps, the size of the
step does not decrease as the denominator increases; on the
contrary, the half-integer steps 1/2 and 3/2 are larger than
the harmonic ones 1/1 and 2/1. However, the higher order
subharmonic steps between half-integer and harmonic steps
still appear according to Farey construction and their sizes
decrease as the denominator increases.

Calculation of the Lyapunov exponent gives a possibility
not only to detect all resonances in the response function, but
also to detect the presence of chaos. In all our simulations
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FIG. 9. The average velocity as a function of average driving
force for Fac = 0.55 and r = 0.2 (the rest of the parameters are as in
Fig. 2). The numbers mark half-integer and subharmonic steps.

performed on the ac+dc driven overdamped FK model we did
not observe any chaos. The presence of deformable substrate
potentials and different level of deformations did not introduce
chaotic behavior into the system. Contrary to our case, chaos
has been observed in the spatiotemporal dynamics of moving
kinks in the damped dc driven FK model where the resonances
appear due to competition between the moving kinks and
their radiated phase modes [26]. Also, structured chaos has
been observed in a Josephson junction system where chaotic
regions appear between the subharmonic Shapiro steps at
certain values of system parameters [27].

IV. CONCLUSION

In this paper, we have presented detailed analysis of the
Shapiro steps in the ac+dc driven dissipative FK model by
using the Lyapunov computation technique. The obtained

results show the presence of a Farey sequence in the
appearance of subharmonic steps. The steps and their relative
sizes follow exactly the Farey construction only in the standard
regime when harmonic steps are the largest one. However,
in the nonstandard regime, the half-integer steps are larger
than the harmonic ones, and the Farey sequence appears only
in the order and relative sizes of higher order subharmonic
Shapiro steps. Lyapunov exponent analysis is certainly one of
the best ways to get an accurate answer about the presence of
chaos in the system. Computations of the Lyapunov exponent
have been performed for different system parameters, and,
regardless of the deformation, no chaos has been observed
in the behavior of the system. The absence of chaos in the
presence of deformable potentials certainly requires further
investigation. This problem and the possibility of chaotic
behavior in other situations such as in the presence of noise
will be the subject of future examinations.

The presented results could be important for studies of
Shapiro steps in all systems that are closely related to the
dissipative dynamics of the FK model. In experimental and
theoretical works performed in charge-density wave systems
and the systems of Josephson junction arrays, measuring of
differential resistance is usually used to detect subharmonic
steps. If we look, for example, at the results obtained in sliding
charge-density wave systems [2], the systems of Josephson
junction arrays [6,7], or superconduction nanowires [8], we can
observe the presence of Farey construction in the appearance
of Shapiro steps. Our analysis shows that Farey construction
can not be always generally applied when it comes to relative
sizes of the observed steps. Since the appearance and origin of
the subharmonic Shapiro steps are still a matter of debate, we
hope that these results could bring insight into understanding
of these physical phenomena.
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[19] J. Tekić and B. Hu, Appl. Phys. Lett. 95, 073502 (2009);
,Phys. Rev. E 81, 036604 (2010).

[20] J. C. Sprott, Numerical calculation of largest Lyapunov expo-
nent, http://sprott.physics.wisc.edu/chaos/lyapexp.htm

[21] R. Thomas, Phys. Rev. Spec. Top. Accel. Beams 17, 014001
(2014).

[22] G. H. Hardy and E. M. Wright, An Introduction to the Theory
of Numbers, 6th ed. (Oxford Science Publications, New York,
2008).
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