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Abstract. We study the asymptotic decay of the Friedel density oscillations induced by an open boundary
in a one-dimensional chain of lattice fermions with a short-range two-particle interaction. From Tomonaga-
Luttinger liquid theory it is known that the decay follows a power law, with an interaction dependent
exponent, which, for repulsive interactions, is larger than the noninteracting value −1. We first investigate
if this behavior can be captured by many-body perturbation theory for either the Green function or the self-
energy in lowest order in the two-particle interaction. The analytic results of the former show a logarithmic
divergence indicative of the power law. One might hope that the resummation of higher order terms inherent
to the Dyson equation then leads to a power law in the perturbation theory for the self-energy. However,
the numerical results do not support this. Next we use density functional theory within the local-density
approximation and an exchange-correlation functional derived from the exact Bethe ansatz solution of the
translational invariant model. While the numerical results are consistent with power-law scaling if systems
of 104 or more lattice sites are considered, the extracted exponent is very close to the noninteracting value
even for sizeable interactions.

1 Introduction

The elementary excitations of one-dimensional (1d),
metallic Fermi systems with a two-particle interaction are
not given by fermionic quasi-particles, but are instead of
collective, bosonic nature [1,2]. Such quantum many-body
systems can thus not be described by Fermi liquid theory.
For short-ranged, i.e. screened, two-particle interactions,
on which we focus here, Tomonaga-Luttinger liquid the-
ory is applicable instead [3]. One of the characteristics of
Tomonaga-Luttinger liquids is the power-law decay of cor-
relation functions at large times or spatial distances with
exponents which, in spinless models, can be expressed in
terms of a single parameter K. This Tomonaga-Luttinger
liquid parameter depends on the band structure and filling
as well as on the amplitude and range of the two-particle
interaction of the model Hamiltonian. For repulsive inter-
actions 0 < K < 1 while K > 1 for attractive ones; K = 1
corresponds to noninteracting fermions.

To exemplify the Tomonaga-Luttinger liquid behavior
let us focus on the observable of interest to us, which is
the density n(x). Depending on the model considered the
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spatial variable x might be continuous or given by a lattice
site index x → j = 1, 2, . . . , L and L being the system
size (the lattice spacing is set to 1). We consider a sys-
tem with open boundary conditions in which translational
invariance is broken. Generically, n(x) shows oscillations
which decay from the boundaries towards the middle, the
bulk part of the chain, at which the average density ν
is reached. From Tomonaga-Luttinger liquid theory it is
known that n(x) − ν decays as x−K and oscillates with
(spatial) frequency 2kF, with the Fermi momentum kF

(~ = 1) [4,5]. For a single-band lattice model kF = νπ.
These are the famous Friedel oscillations with an expo-
nent which, however, is modified by the interaction as
compared to the noninteracting value −1 (−d in d dimen-
sions). For repulsive interactions the oscillations decay
slower while they decay faster for attractive ones.

For the lattice model of spinless fermions with nearest-
neighbor hopping t and nearest-neighbor density–density
interaction U considered here, in the thermodynamic limit
K(ν, U/t) can be expressed in terms of a set of coupled
integral equations derived from the Bethe ansatz solution
of this model [6]. At half-filling, ν = 1/2, a closed-form
expression forK(ν, U/t) can be derived. For−2 < U/t < 2
the model is in a metallic Tomonaga-Luttinger liquid
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phase while for |U |/t > 2 insulating phases are found.
Away from half-filling the model is a Tomonaga-Luttinger
liquid for all U/t > −2. However, the integral equa-
tions can only be solved numerically (with high precision)
and accordingly K(ν, U/t) is only known numerically. We
will refer to this as the exact Tomonaga-Luttinger liquid
parameter.

It is generally believed that approximate approaches
to the quantum many-body problem which lead to an
effective fermionic single-particle picture, such as, e.g.,
lowest order perturbation theory, will generically fail to
capture Tomonaga-Luttinger liquid behavior of correla-
tion functions. Such approaches appear to be at odds with
the absence of fermionic quasi-particles in Tomonaga-
Luttinger liquids. An exception to this is the local single-
particle spectral function as a function of frequency on
lattice sites close to an open boundary. For this the lowest
order perturbation theory in U for the self-energy, i.e. the
non-self-consistent Hartree-Fock approximation, leads to
a power-law suppression in accordance with Tomonaga-
Luttinger liquid theory [7]. Motivated by this we investi-
gate if the same holds for the decay of the density oscil-
lations away from an open boundary and into the bulk of
the chain. Lowest order perturbation theory for the Green
function shows a logarithmic position dependence consis-
tent with the power law. However, the numerical non-
self-consistent Hartree-Fock data do not support that the
resummation of higher-order terms inherent to the Dyson
equation does elevate this logarithmic term to a power law.

Next, we study if the power-law decay of the den-
sity with an interaction dependent exponent can be
obtained within (lattice [8–11]) density functional theory
(DFT) [12], an approach which also builds on an effec-
tive single-particle picture. We employ the local density
approximation extracted from the ground-state energy
obtained from the Bethe ansatz (BALDA) solution of the
lattice model. For a different lattice model this approach
was first suggested in reference [9].

In reference [13] BALDA-DFT was used to investi-
gate the static and dynamic response of the translational
invariant (periodic boundary conditions) lattice model
described above as well as the behavior of this model if
a single impurity is introduced. The authors concluded
that Tomonaga-Luttinger liquid behavior is not captured.
However, they did not search for the characteristic power-
law scaling of correlation functions and were bound to
systems of only a few hundred lattice sites (see below).

The two observables which are most directly accessi-
ble within a DFT approach are the ground-state energy
and the ground-state density. Here, we study the latter
for systems of up to 106 lattice sites; the former does not
contain any Tomonaga-Luttinger liquid power laws [1,2].
The characteristic Tomonaga-Luttinger liquid behavior
induced by an open boundary is much less involved
than the one resulting from a localized impurity (renor-
malization group flow of the impurity towards an open
boundary) [5,14–16]. Posing the question if BALDA-DFT
can correctly describe the decay of the Friedel oscillations
due to an open boundary, as we do here, thus constitutes
less of a challenge to this method as compared to the
problems investigated in reference [13]. With a different

emphasize to ours the perspectives of using Hartree-Fock
and DFT to study Friedel oscillations in 1d correlated
fermions were also investigated in reference [17].

With the hard wall boundary replaced by a local
impurity Friedel oscillations were investigated for the
1d (spinful) Hubbard model in reference [10] employing
BALDA-DFT. The density for lattices of a few hundred
lattice sites was computed. For the local single-particle
spectral function it is well established that to unam-
biguously observe asymptotic Tomonaga-Luttinger liquid
power-law behavior much larger system sizes (of the order
of 104 to 105 sites) are required even in the most simple
case of spinless fermions with open boundaries; see e.g.
reference [18]. The same is expected to hold for the decay
of the density oscillations; see below for explicit results on
this. For smaller systems the asymptotics is completely
masked by finite size effects. The study of reference [10]
faces two additional challenges: (1) due to the logarith-
mically slow vanishing of the two-particle backscattering
of particles with opposite spin for increasing system size
[19], even larger systems than for spinless models are
required to observe power laws in the Hubbard model,
see e.g. references [20,21]. (2) The finite local impurity
of reference [10] requires larger systems to observe the
asymptotic density decay than the open boundary, see
e.g. references [5,16,18,20]. It was thus premature to fit
the density decay obtained in reference [10] by a power
law. Not surprisingly, the exponents obtained for repulsive
interactions are smaller than −1 and, therefore, contradict
Tomonaga-Luttinger liquid theory.

Our numerical BALDA-DFT data for the density decay
away from the open boundary for the above lattice model
of spinless fermions turn out to be consistent with power-
law scaling if system sizes of 104 or more lattice sites are
considered. However, the exponent extracted is very differ-
ent from the exact Tomonaga-Luttinger liquid parameter.
Even for sizeable interactions the data appear to be
consistent with the noninteracting value −1.

The remainder of this paper is organized as follows.
In Section 2 we present our model and give basics on
the methods used to compute the density. Our results
obtained by the three approaches, i.e. lowest order per-
turbation theory for the Green function, the non-self-
consistent Hartree-Fock approximation as well as the
BALDA-DFT, are presented in the three subsections
of Section 3. Details on the analytical calculations for
the Green function perturbation theory are given in the
appendix. We conclude in Section 4.

2 The model and methods

2.1 Spinless lattice fermions

We study the 1d model of spinless fermions with nearest-
neighbor hopping t > 0 and nearest-neighbor interaction
U between particles occupying the Wannier states with
lattice site index j. It is given by the Hamiltonian

H = −t
L−1∑
j=1

(
c†j+1cj + H.c.

)
+ U

L−1∑
j=1

njnj+1 (1)
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in standard second quantized notation, where nj = c†jcj is
the density operator on site j and L denotes the number
of lattice sites. Note the open boundary conditions.

In the noninteracting case, U = 0, the single-particle
eigenfunctions |n〉, with n ∈ {1, 2, ..., L} are given by

〈j|n〉 =

√
2

L+ 1
sin (knj), kn =

nπ

(L+ 1)
. (2)

The single-particle energies are ε(k) = −2t cos k. The
many-body ground state for band filling ν = N/L is
given by the Slater determinant build out of the first N
single-particle states.

The ground-state expectation value of the density can,
for arbitrary U , be computed from the (zero temperature)
Matsubara Green function Gj,j′(ω) as

n(j) = 〈nj〉 =
1

2
+

1

π

∞∫
0

dωReGj,j(iω). (3)

For U = 0 the Green function in the single-particle
eigenbasis {|n〉} is given by

G0
n,n′ = [iω − ξ(kn)]−1δn,n′ , (4)

where ξ(k) = ε(k) − µ, with the chemical potential µ.
Changing to this basis and inserting G0, the integral in
equation (3) can be performed leading to (j = 1, 2, . . . , L)

n0(j) =
2N + 1

2(L+ 1)
− 1

2(L+ 1)

sin
(

π
L+1j [2N + 1]

)
sin
(

π
L+1j

) . (5)

In the thermodynamic limit L,N → ∞, ν = N/L fixed,
the noninteracting density reduces to

n0(j) = ν − sin (2kFj)

2πj
. (6)

These are the well known Friedel oscillations with wave
vector 2kF which, in a noninteracting 1d system, decay as
1/j.

Note that for half filling, ν = 1/2, of the lattice the
oscillatory part of the density vanishes in both the finite
system result (Eq. (5)) as well as in the L → ∞ result
(Eq. (6)) and n0(j) = 1/2. The same holds for U 6= 0 [22].

2.2 The Bethe ansatz solution and
Tomonaga-Luttinger liquid properties

For U 6= 0 the model equation (1) with periodic bound-
ary conditions is Bethe ansatz solvable (see e.g. Ref. [2]).
In the thermodynamic limit this allows one to formu-
late a closed set of integral equations from which the
ground-state energy and other quantities of interest can
be obtained. The results derived along this line are
consistent with the assumption that the model falls into

the Tomonaga-Luttinger liquid universality class for ν 6=
1/2 and all U/t > −2 as well as for −2 < U/t < 2 at half
filling ν = 1/2 [6]. We focus on this Tomonaga-Luttinger
liquid regime.

The solvability by Bethe ansatz does, however, not
imply that explicit analytic expressions for correlation
functions showing the characteristic Tomonaga-Luttinger
liquid power laws can be derived. Computing correlation
functions by numerical methods (for particularly convinc-
ing results, see Ref. [23]) as well as renormalization group
approaches (see e.g. Refs. [2,18,19,24]) it was still unam-
biguously confirmed that, for the above parameter regime,
the model is a Tomonaga-Luttinger liquid. The corre-
sponding asymptotic decay of the Friedel oscillations off
an open boundary

∣∣nTL(j)− ν
∣∣ ∼ sin (2kFj)

jK
, (7)

as described in Section 1, was explicitely confirmed for the
present model in reference [18].

For ν 6= 1/2 results for the Tomonaga-Luttinger liquid
parameter K(ν, U/t) can be obtained from numerically
solving the Bethe ansatz integral equations [6]. To leading
order in U/t one finds [2,7]

K = 1− U

πvF
[1− cos (2kF)] +O

(
[U/t]2

)
, (8)

with the Fermi velocity vF = 2t sin kF. For ν = 1/2
a closed analytical expression for K(1/2, U/t) can be
derived even beyond the leading order. However, as
already indicated by the absence of Friedel oscillations for
U = 0 [see Eqs. (5) and (6)], half-filling is nongeneric if
it comes to density oscillations and thus of minor interest
to us.

2.3 The Bethe ansatz solution and LDA-DFT

The Bethe ansatz integral equations for the transla-
tional invariant model can also be used within a Bethe
ansatz (BA)LDA-DFT approach to derive an exchange-
correlation functional.

In a practical implementation of the DFT idea
one constructs an auxiliary, noninteracting Kohn-Sham
Hamiltonian [25]

HKS = −t
L−1∑
j=1

(
c†j+1cj + H.c.

)
+
L−1∑
j=1

vjnj , (9)

with the onsite potential vj chosen such that it leads
to the same density n(j) as in the interacting problem.
The single-particle potential is written as vj = vH

j + vxc
j

with the Hartree potential vH
j = U [n(j + 1) + n(j − 1)]

and the exchange-correlation potential on site j

vxc
j =

∂

∂n

[
eBA(n,U)− eH(n,U)

]
n=n(j)

(10)
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where eBA(n,U) is the Bethe ansatz ground-state energy
per site of the homogeneous system with density n
and interaction strength U . The other term is the
Hartree energy given by eH(n,U) = − 2t

π sin (kF) + Un2.
The exchange-correlation potential is computed numer-
ically solving the Bethe ansatz integral equations. The
derivative in equation (10) is approximated by centered
differences. For a plot of vxc as a function of the den-
sity at different U/t for our model, see Figure 1 of
reference [13].

When numerically solving the DFT self-consistency
problem, instead of following the standard procedure of
diagonalizing the single-particle Kohn-Sham Hamiltonian
equation (9) and subsequently computing the density from
the Kohn-Sham single-particle eigenstates, we here pro-
ceed differently. To compute the (j, j) matrix element
of the Green function of the Kohn-Sham system, from
which nDFT(j) can be obtained by equation (3), we only
have to determine the diagonal part of the inverse of
the tri-diagonal matrix associated to HKS. As described
in Appendix C of reference [18] this can be achieved
in O(L) time (L is the system size and thus the size
of the resolvent matrix) and is thus much faster and
requires less memory as compared to a diagonalization.
We note that we implement the integration of equa-
tion (3) as the solution of a differential equation (for more
details see [26]). All this allows us to study systems of
up to 106 lattice sites (at sizeable filling) not accessi-
ble following the standard procedure. In particular, we
are able to study much larger systems as compared to
the ones investigated in references [13] (spinless fermions)
and [10] (Hubbard model). We believe that this approach
might also be useful in other DFT applications. The self-
consistency cycle of DFT was stopped when the change
of the density summed over all lattice sites was less
than 10−5. The convergence is achieved in about 10 to
20 cycles, when performing the usual linear mixing of
the density.

Results for the density profile obtained along these lines
are presented in Section 3.3.

2.4 Perturbation theory

Many-body perturbation theory in lowest order in U/t
provides an alternative way to obtain approximate results
for the density. We compute the self-energy Σ to first
order in U/t (non-self-consistent Hartree-Fock approx-
imation). To this order it becomes (Matsubara-) fre-
quency independent. Within the Wannier basis Σ1PT is
a tri-diagonal matrix with the diagonal (Hartree term)
given by

Σ1PT
j,j = −

Un
0(2) for j = 1

U
[
n0(j − 1) + n0(j + 1)

]
for j = 2, . . . , L− 1

Un0(L− 1) for j = L,

(11)

with n0(j) stated in equation (5). The upper first off-
diagonal (Fock term) reads

Σ1PT
j,j+1 =

U

2(L+ 1)

 sin
[

π
L+1

(
N + 1

2

)]
sin
[

π
2(L+1)

]
−

sin
[

π
L+1

(
N + 1

2

)
(2j + 1)

]
sin
[

π
2(L+1) (2j + 1)

]
 , (12)

with j = 1, 2, . . . , L−1. The lower first off-diagonal follows
from Σ† = Σ. To obtain the non-self-consistent Hartree-
Fock approximation for the Green function

GHF =
[(
G0
)−1 − Σ1PT

]−1

(13)

and from this nHF(j) employing equation (3), we thus
have to solve a noninteracting single-particle problem
with an effective bond-dependent nearest-neighbor hop-
ping t − Σ1PT

j,j+1 and the effective site-dependent onsite

energy Σ1PT
j,j . Due to the involved j dependence of the

hopping and onsite energy, reflecting the Friedel oscil-
lations of the noninteracting density n0(j), this cannot
be achieved analytically. As in BALDA-DFT we refrain
from numerically diagonalizing the effective single-particle
Hamiltonian and instead exploit that to compute nHF(j)
we only need the diagonal part of the inverse of a tri-
diagonal matrix which can be determined numerically in
O(L) [18]. For results, see Section 3.2.

To gain analytical insights we expand equation (13) to
first order in U (first order perturbation theory for the
Green function)

G1PT = G0 +G0Σ1PTG0 (14)

which, using equation (3), leads to a first order approxima-
tion for the density n1PT(j). For analytical calculations it
is advantageous to work in the basis of the single-particle
eigenfunctions {|n〉} of the noninteracting Hamiltonian
equation (2) in which G0 is diagonal; see equation (4).
We thus have to compute Σ1PT in this basis instead of
the Wannier basis as done in equations (11) and (12).
Details on this and the corresponding results for n1PT(j)
are discussed in Section 3.1 and the Appendix (see also
Ref. [7]).

3 Results for the density decay

We next present our results for the density decay employ-
ing the three approximate approaches discussed in the
last section. As mentioned in the Introduction it is com-
monly believed that Tomonaga-Luttinger liquid power
laws, e.g. the one of equation (7) found for the decay of
the Friedel oscillations, cannot be obtained by approaches
based on effective fermionic single-particle pictures. We
will show that the analytical results of the first order
perturbation theory for the Green function n1PT(j) indi-
cate the TLL power law by showing a logarithmic j
dependence. More cannot be expected within this approx-
imation. The numerical results for the non-self-consistent
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(L+ 1)Σ1PT
n,n′

U
=

{
2N −

N∑
m=1

[
cos (kn − km) + cos (kn + km)

]}
δn,n′ −

{
cos (kn − kn′)− cos

(
kn + kn′

2

)}
f

(
|n− n′|

2

)

+

{
cos (kn + kn′)− cos

(
kn − kn′

2

)}
f

(
n+ n′

2

)
(16)

Hartree-Fock approximation nHF(j) do not support that
the logarithmic behavior is elevated to a power law by
the resummation inherent to the use of the Dyson equa-
tion (13). The numerical BALDA-DFT results for the
density nDFT(j) are consistent with power-law scaling,
however, with an exponent which is very close to the
noninteracting value −1 even for sizeable two-particle
interactions.

3.1 Perturbation theory for the Green function

To see what to expect when computing n1PT(j) we first
expand the Tomonaga-Luttinger liquid result equation (7)
using the leading order expression for the Tomonaga-
Luttinger liquid parameter K equation (8). For kF 6= π/2,
i.e. ν 6= 1/2, this leads to

∣∣nTL(j)− ν
∣∣ ∼ sin (2kFj)

j

{
1 +

U

πvF
[1− cos (2kF)] ln j

}
+O

(
[U/t]

2
)
. (15)

The appearance of a ln j term in n1PT(j), with a pref-
actor which corresponds to the negative of the leading
order correction of K equation (8), would thus provide an
indication of Tomonaga-Luttinger liquid behavior. In low-
est order perturbation theory for the Green function we
strictly expand the density to first order in U/t and thus
cannot expect more, such as, e.g., a power law with a U
dependent exponent. The case of half-filling is excluded
as the prefactor in front of the curly brackets on the
right hand side of equation (15) would vanish. As already
mentioned in Section 2.1 for a half-filled band nongeneric
behavior of the density is found [22] and from now on we
exclude this from our considerations. Results for ν = 1/2
are presented in reference [26].

Following reference [7] the self-energy in the basis of the
single-particle eigenfunctions can be written as

See equation (16) above

with

f(x) =

{
1 for x ≤ N ∧ x ∈ N
0 otherwise.

(17)

We here already neglected terms with an additional pref-
actor 1/L which are irrelevant as we later take the ther-
modynamic limit. Note that contributions from umklapp
scattering, only present for ν = 1/2, are suppressed.

To illustrate the effect of the two-particle interaction
we first consider the diagonal part Σ1PT

n,n . For L→∞ it is
given by

Σ1PT
k,k = 2Uν − 2U

π
sin (πν) cos k. (18)

The first addend is a U dependent shift of the chemical
potential. The second one can be combined with the non-
interacting single-particle dispersion ε(k) = −2t cos k to a
U dependent change of the hopping t̄ = t+ U

π sin(πν). In
a translational invariant setup (periodic boundary condi-
tions) all other matrix elements of the self-energy vanish
and on non-self-consistent Hartree-Fock level the effect of
the interaction reduces to a shift of the chemical potential
and a change of the band width from 4t to 4t̄ (broadening
of the band for repulsive interactions U > 0).

To obtain n1PT(j) we separate the noninteracting den-
sity n0(j) and the first order correction ∆n1PT(j) ∝ U/t
such that n1PT(j) = n0(j) + ∆n1PT(j). Employing equa-
tions (14) as well as (3) and performing the integral over
ω we obtain for L→∞

∆n1PT(j) =
U

tπ2

∫ kF

0

dk

∫ π

kF

dk′
sin (kj) sin (k′j)

cos (k′)− cos (k)
σ1PT
k,k′ ,

(19)
with

σ1PT
k,k′ = −

{
cos (k − k′)− cos

(
k + k′

2

)}
θ

(
kF −

k − k′

2

)

+

{
cos (k + k′)− cos

(
k − k′

2

)}
θ

(
kF −

k + k′

2

)
.

(20)

In the Appendix we show how to analytically evaluate the
double integral for large j. The final result for the leading
j dependence reads

∆n1PT(j) = − sin (2kFj)

2πj

U

2πt sin(kF)
[1− cos (2kF)] ln j.

(21)
Using vF = 2t sin kF and equation (6) for n0(j) the
perturbative calculation to leading order in U/t agrees
with our expectation from Tomonaga-Luttinger theory
equation (15) in the limit j � 1. Perturbation theory
for the Green function is thus consistent with Tomonaga-
Luttinger liquid behavior. The total density n1PT(j) is
expected to agree with the exact one as long as the abso-
lute value of the correction equation (21) is much smaller
than the noninteracting density n0(j). In particular, this
implies that U/t ln j � 1 must hold.
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Fig. 1. Density profile n(j) for L = 128 sites and interaction
strength U/t = 0.5 at quarter-filling ν = 1/4. Results obtained
within the non-self-consistent Hartree-Fock approximation and
the BALDA-DFT are compared to “numerically exact” ones
computed using DMRG. The DMRG data were provided by
C. Karrasch.

One might hope that the resummation of higher-order
terms inherent to the Dyson equation (13) will lead to the
Tomonaga-Luttinger liquid power law of equation (7) for
nHF(j) with the correct leading order (in U/t) exponent
instead of the logarithmic behavior found for n1PT(j).
This will be investigated next.

3.2 The non-self-consistent Hartree-Fock
approximation

Due to the nontrivial spatial dependence of the self-energy
(Eqs. (11) and (12)) we did not succeed in analytically
performing the inversion inherent to equation (13). All
non-self-consistent Hartree-Fock results nHF(j) shown in
this section were thus obtained by inserting the self-energy
matrix elements (Eqs. (11) and (12)) into equation (13),
determining the diagonal part of the inverse by the O(L)
algorithm of reference [18], and numerically performing
the integral equation (3) (implemented as the solution of
a differential equation).

In Figure 1 we compare nHF(j) (and in addition
nDFT(j); see Sect. 3.3) with highly accurate (“numerical
exact”) results obtained using the density-matrix renor-
malization group (DMRG). This numerical approach can
be used for systems of up to 103 lattice sites. In the figure
we show data for L = 128, ν = 1/4, and U/t = 0.5. The
overall agreement is acceptable. The data clearly show
the 2kF periodicity. An analysis of the decay in the light
of the asymptotic Tomonaga-Luttinger liquid power law
equation (7) is meaningless as the overlap of the oscil-
lations originating from the two boundaries of the chain
prevents that the asymptotic behavior develops for such
small systems. Therefore, larger systems have to be
studied.

Using the O(L) algorithm discussed in Section 2.4 we
can straightforwardly compute nHF(j) for systems of up
to L = 106 sites. We believe that for a faithful and unbi-
ased search for power-law scaling a corresponding fit of
the numerical data is not sufficient. In particular, using

perturbation theory we are bound to small interactions,
for which the exact exponent is very close to the noninter-
acting value −1; see equation (8). In this case a power law
might be barely distinguishable from the leading logarith-
mic behavior analytically found in perturbation theory
for the Green function equation (21). We will thus per-
form a more stringent analysis of the data. To this end we
focus on the upper envelope of the decaying data (compare
Fig. 1), that is the j for which a local maximum is taken.
They have a mutual distance of ν−1. We then compute
centered logarithmic differences

α(j) =
ln
[
ñ
(
j + ν−1

)]
− ln

[
ñ
(
j − ν−1

)]
ln (j + ν−1)− ln (j − ν−1)

, (22)

with ñ(j) = n(j) − ν, which should approach a constant
value (the value of the exponent) for sufficiently large j if
the density decays according to a power law. In contrast
to a power-law fit the logarithmic differences directly indi-
cate any systematic deviation from power-law behavior.
In addition, we compute the following semi-logarithmic
centered differences

β(j) = 2π

(
j + ν−1

)
ñ
(
j + ν−1

)
−
(
j − ν−1

)
ñ
(
j − ν−1

)
ln (j + ν−1)− ln (j − ν−1)

.

(23)
If also the non-self-consistent Hartree-Fock data only show
the logarithmic correction equation (21) instead of a
resummed power law, β(j) should display a plateau at
the value U

2πt sin(kF) [1− cos (2kF)]. We then compare α(j)

and β(j) for a given parameter set to judge which of the
two is more plateau-like and thus to judge if the data
are more consistent with a power law or the logarithmic
behavior equation (21). Note that taking the logarith-
mic differences equation (22) or semi-logarithmic ones
equation (23) significantly enhances any small numerical
error in n(j).

In Figure 2 we show αHF(j) and βHF(j) for L = 220,
the two fillings ν = 1/4 and ν = 1/8 as well as three
interactions U/t = 0.1, U/t = 0.4, and U/t = 0.7. While
for small U/t the numerical non-self-consistent Hartree-
Fock data are consistent with both the power law and
the logarithmic behavior equation (21), for larger U/t,
βHF(j) is more plateau-like as compared to αHF(j). Fur-
thermore, the value of the plateau of βHF(j) is close to

U
2πt sin(kF) [1− cos (2kF)] which is shown as the horizontal

lines in Figure 2. However, due to the effect of the right
boundary, at larger j a deviation from the plateau is found
already for j � L.

For ν = 1/4 and U/t = 0.7 a deviation between the
plateau value of the data and the expectation (solid hori-
zontal line) from first order perturbation theory is found.
This is due to higher order corrections (in U/t) appear-
ing in the non-self-consistent Hartree-Fock approximation.
For larger interactions those become sizable. One such cor-
rection originates from the changed band width 4t→ 4t̄ as
discussed in Section 3.1. In fact, in the non-self-consistent
Hartree-Fock approximation t is replaced by t̄ at any
instance the hopping amplitude appears. For this reason

https://epjb.epj.org/
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Fig. 2. The apparent exponent α(j) (Eq. (22)) (blue) and
the apparent prefactor of ln j (Eq. (23)) (red) of the decay of
the density oscillations within the non-self-consistent Hartree-
Fock approximation for a system with two open boundaries.
The parameters are ν = 1/8 (upper panel) and ν = 1/4 (lower
panel), U/t = 0.1 (dotted), U/t = 0.4 (dashed-dotted), and
U/t = 0.7 (solid). The horizontal lines indicate the correspond-
ing prefactor of the ln j term from first order perturbation
theory for the Green function equation (21). The horizontal
dashed line shows this value with t replaced by t̄ (only shown
for ν = 1/4 and U/t = 0.7).

Fig. 3. The same as in Figure 2, but for a chain with one
open boundary, which at j = L is adiabatically connected to a
semi-infinite noninteracting lead.

the horizontal dashed line (only shown for ν = 1/4 and
U/t = 0.7) which indicates U

2πt̄ sin(kF) [1− cos (2kF)] fits

better to the data.
To further investigate nHF(j) we suppress the effect

of the right boundary by adiabatically connecting the
interacting chain to a semi-infinite noninteracting tight-
binding chain at site j = L. This way the spatial region
j ≈ L does not act as a source of any (significant) oscilla-
tions in the self-energy and thus not as a source of another
decaying oscillation in the density. The technical details
how to achieve this are described in reference [18]. In par-
ticular, the interaction has to be turned off smoothly over

a sufficiently large spatial regime close to j = L. Figure 3
shows αHF(j) and βHF(j) obtained this way for the same
parameters as in Figure 2. As expected, for most param-
eter sets the plateau in βHF(j) extends towards larger j
if the oscillations originating from j ≈ L are suppressed.
We generically gain between one half and one order of
magnitude; compare Figures 3 and 2. However, our con-
clusions drawn are the same as the ones from the setup
with two open boundaries. Even with a noninteracting
lead connected adiabatically deviations from the plateau
value are found already at j < L. The information about
the finiteness of the interacting part of the chain is still
encoded in the data.

Based on these results we conclude that the resum-
mation inherent to the Dyson equation (13) does not
lead to a resummation of the logarithmic behavior
equation (21) of first order perturbation theory to a power
law. This has to be contrasted to the frequency depen-
dence of the local single-particle spectral function in which
this resummation was shown earlier [18].

We note in passing, that a self-consistent Hartree-Fock
approximation leads to Friedel oscillations with an ampli-
tude which is much larger than the one found using
DMRG. Increasing the system size L a nondecaying den-
sity oscillation appears to develop; see reference [17], [26]
and [27]. The self-consistency seemingly triggers a spuri-
ous charge-density wave instability. This is not surprising
as the 1d system is highly susceptible towards 2kF insta-
bilities. The self-consistent Hartree-Fock approximation is
thus an inappropriate approach to study the problem at
hand.

In our search for an approximate method, which is based
on an effective fermionic single-particle picture, to capture
the Tomonaga-Luttinger liquid power law equation (7), in
the next section we use BALDA-DFT. As it is usually
the case in a DFT approach the regime of validity given
a certain exchange-correlation functional is not obvious a
priori. In fact, this is one of our motivations to study the
density within BALDA-DFT.

3.3 BALDA-DFT

We finally investigate whether or not the LDA-DFT with
an exchange-correlation functional determined from the
exact Bethe ansatz solution of the homogeneous system is
able to produce the Tomonaga-Luttinger liquid power-law
decay of the Friedel density oscillations.

Figure 1 shows nDFT(j) in comparison to nDMRG(j) and
nHF(j) for a small system with L = 128, ν = 1/4, and
U/t = 0.5. The BALDA-DFT results are very close to the
ones obtained within the non-self-consistent Hartree-Fock
approximation.

In Figure 4 we again consider a larger chain, L = 220

and show the logarithmic derivative (the apparent expo-
nent) αDFT(j) for the same parameters as in Figure 2.
Here, we directly study the chain with one open boundary
which at j = L is adiabatically connected to a semi-
infinite noninteracting lead, a setup which turned out to
be advantageous for the analysis of the non-self-consistent
Hartree-Fock data. The data show a plateau at inter-
mediate j and are therefore consistent with power-law

https://epjb.epj.org/
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Fig. 4. The apparent exponent α(j) (Eq. (22)) of the decay
of the density oscillations within the BALDA-DFT approxi-
mation for a chain with one open boundary, which at j = L is
adiabatically connected to a semi-infinite noninteracting lead.
The parameters are the same as in Figure 2. Here, the hor-
izontal lines indicate the exact exponent −K(ν, U/t), with
U/t = 0.1 (dotted), U/t = 0.4 (dashed-dotted), and U/t = 0.7
(solid).

behavior, however, with an exponent which is far off
from the exact one −K(ν, U/t) (horizontal lines). Based
on these results one is tempted to conclude that the
BALDA-DFT exponent agrees with the noninteracting
value −1.

Obviously, the BALDA-DFT does not give a satisfying
description of the Tomonaga-Luttinger liquid power-law
scaling of the decay of the density away from an open
boundary towards the bulk value ν. It, however, does
not lead to a spurious charge-density wave instability as
found in self-consistent Hartree-Fock. We emphasize that
the failure of BALDA-DFT to correctly describe the de-
cay of the Friedel oscillations is entirely due to the use
of the Bethe ansatz local density approximation. The ex-
act functional, which is unknown, would reproduce the
many-body density and hence describe the decay of the
oscillations correctly.

4 Conclusion

In this paper we have provided strong numerical evi-
dence that neither the non-self-consistent Hartree-Fock
approximation nor a density functional theory approach
within the Bethe-ansatz local density approximation are
able to capture the Tomonaga-Luttinger liquid power-
law decay of the Friedel density oscillations off an open
boundary. We focused on the 1d lattice model of spinless
fermions with nearest-neighbor hopping and (short-range)
nearest-neighbor two-particle interaction.

As expected, first order many-body perturbation the-
ory of the Green function (in the two-particle interaction)
shows a logarithmic dependence of the density n(j) on
the position which is in accordance with Tomonaga-
Luttinger liquid behavior. The numerical data of the

non-self-consistent Hartree-Fock approximation indicate
that the resummation of higher order terms inherent
to the use of the Dyson equation within this approach
does not elevate this logarithmic behavior to a power
law. The data for the density are rather consistent with
ln j behavior. This has to be contrasted to another
observable, the local spectral function close to an open
boundary as a function of frequency, for which such a
resummation was observed when going from first order
perturbation theory for the Green function to the non-
self-consistent Hartree-Fock approximation [7]. We briefly
mentioned that the self-consistent Hartree-Fock approx-
imation is prone to a spurious 2kF charge-density wave
instability [17,26,27].

For the 1d (spinful) Hubbard model the decay of
the Friedel density oscillations off an impurity was ear-
lier investigated using BALDA-DFT [10]. Even before
discussing our BALDA-DFT data for the density, we pro-
vided arguments which clearly indicate that the results
of reference [10] were obtained for system sizes which are
way too small to allow for a meaningful search for the
asymptotic Tomonaga-Luttinger liquid power-law decay.
Studying systems of up to 106 lattice sites for a spin-
less model with open boundaries we are in a position to
investigate if BALDA-DFT captures this power law. Our
numerical data are consistent with a power-law decay of
the density oscillations towards the bulk density, how-
ever, with the noninteracting exponent −1 instead of
the interaction and filling dependent one −K(ν, U/t). We
thus conclude that BALDA-DFT does not capture the
Tomonaga-Luttinger liquid characteristics of n(j). This
result is in accordance with the conclusion reached in
reference [13], in which the same model as studied here was
investigated. In this paper observables other than the den-
sity were computed for systems of a few hundred lattice
sites. We reiterate that besides the ground-state energy
the density is the observable most directly accessible in a
DFT approach. As such one can hope that future improve-
ments to the BALDA functional will be able to describe
the decay of the density oscillations correctly.
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Appendix A: Details on the perturbation
theory for the Green function

In this Appendix, we present details on the asymp-
totic analysis (j → ∞) for the Fourier type integrals in
equation (19). We separately discuss integrals over rect-
angular and triangular domains, which correspond to the
terms that appear in the first and second line of equation
(20), respectively.

A.1 Integrals over a rectangular domain

Integrals that appear take the following form (for 0 < a <
b ∈ R)

IR =

a∫
0

dx

b∫
a

dy
sin (xj) sin (yj)

cos (y)− cos (x)
f(x, y), (A.1)

where f(x, y) is assumed to be analytic, and symmetric
under the exchange of the arguments for the following
analysis to apply. These conditions are satisfied by the
terms in the first line of equation (20). The integrand of
equation (A.1) is singular at x = y = a. Hence, integration
by parts cannot be employed to extract the asymptotics.
Therefore, we rewrite the integral as

IR =

a∫
0

dx

b∫
a

dy
(
eixj − e−ixj

)(
eiyj − e−iyj

)
g(x, y),

(A.2)

with g(x, y) = − 1
4

f(x,y)
cos (y)−cos (x) , and proceed by using the

method of steepest descent. We deform the integration
contour C, which runs from a to b along the real y axis as
depicted in Figure A.1a, into C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6.
The integral now reads

IR =

∞∫
0

d(iy)e−jy
a∫

0

dxh(x)
(
eixj − e−ixj

)
, (A.3)

with h(x) = eijag(x, a + iy) − eijbg(x, b + iy) +
e−ijag(x, a − iy) − e−ijbg(x, b − iy). We apply the
same steps to the integral over x and deform the contour
into three line segments for each of the two terms as
before for the integration over y.

This time, however, two poles are located on the con-
tour, which arise from the singularity. They were shifted
away from the real axis as depicted in Figure A.1b.
Following this second contour deformation the integral
reads

See equation (A.4) next page

where Res denotes the residue. The poles only contribute
with half their residue as they lie on the contour. The
integrals in the second line of equation (A.4) are either
zero, because the domain of integration is symmetric

under reflection with respect to the axis x = y, cancel
each other under the exchange of arguments, or yield
sub-leading contributions ∼ j−2. The integrals that pro-
duce the sub-leading contributions do not contain the pole
and can be computed using integration by parts. The lead-
ing order contribution to the integral originates from the
residues, which when evaluated, give

IR =
π

4

∞∫
0

dye−2jy

(
f(a+ iy, a+ iy)

sin (a+ iy)
e2ija

+
f(a− iy, a− iy)

sin (a− iy)
e−2ija

)
+O

(
j−2
)
. (A.5)

After substituting y′ = jy and taking the limit j →∞ we
obtain the leading order asymptotic contribution as

IR ≈ π

4j

f(a, a)

sin (a)
cos (2ja). (A.6)

A.2 Integrals over a triangular domain

The integrals we encounter on the triangular domains are
of the following form

IT =

a∫
0

dx

2a−x∫
a

dy
sin (xj) sin (yj)

cos (y)− cos (x)
f(x, y). (A.7)

The same constraints on f(x, y) as for the integrals on
rectangular domains hold. Rewriting the integrand in
terms of exponential functions and using the transforma-
tion as (x, y) 7→ (a− x, a+ y) we obtain

IT =

a∫
0

dx

x∫
0

dyg(a− x, a+ y)×
(
eij(a−x) − e−ij(a−x)

)
×
(
eij(a+y) − e−ij(a+y)

)
. (A.8)

The transformation shifts the pole from (a, a) to (0, 0) and
simplifies the computation by fixing the singularity. Using
contour extensions for the integral over y we arrive at

ĨT = eija
a∫

0

dx

∞∫
0

d(iy)e−jy

×

{(
eij(a−x) − e−ij(a−x)

)
g(a− x, a+ iy)

−
(
eija − e−ij(a−2x)

)
g(a− x, a+ x+ iy)

}
, (A.9)

where IT = 2ReĨT. ĨT contains four integrals. Two of
those can be evaluated to yield contributions to sub-
leading order ∼ j−2. One contains the pole and computing

https://epjb.epj.org/
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IR =

∞∫
0

d(iy)e−yj

{
iπRes

[
h(a+ ix)eij(a+ix), x→ y

]
+ iπRes

[
h(a− ix)e−ij(a−ix), x→ y

]

+

∞∫
0

d(ix)e−xj
(

2Re [h(ix)]− eijah(a+ ix)− e−ijah(a− ix)
)}

, (A.4)

Fig. A.1. (a) Integration contour of the inner integral.
(b) Integration contour of the outer integral. The poles are
indicated by the red crosses.

the residue, as in the case of rectangular integration
domains, we obtain to leading order

ĨT
pole ≈

π

8j sin a
f(a, a)e2ija. (A.10)

The remaining term reads

e2ija

4

∞∫
0

d(iy)e−jy
a∫

0

dx
f(a− x, a+ x+ iy)

cos (a+ x+ iy)− cos (a− x)
.

(A.11)
At this point we need to specify the function f to be
able to proceed. As an example, we consider f(x, y) =
cos (x+ y); see equation (20). The integral over x is j
independent and can evaluated straightforwardly. It yields

− ie
2ija

8

∞∫
0

dye−jy
cos (2a+ iy)

sin
(
a+ iy

2

)
× ln

[
tan

(
a/2 + iy/4

)
cot
(
iy/4

)]
. (A.12)

Taking the limit j →∞ and using that

∞∫
0

e−xj ln (x)dx = −γ + ln (j)

j
, (A.13)

where γ ≈ 0.577... is the Euler-Mascheroni constant, we
obtain a logarithmic contribution to the integral. Com-
bining this with the pole contribution of equation (A.10)
we finally obtain for the leading order asymptotics

IT ≈ sin (2ja) cos (2a)

4j sin (a)

{
ln j + γ + ln 4 tan (a/2)

}
+

cos (2ja)π cos (2a)

8j sin (a)
. (A.14)

To verify that the analytical expressions (Eqs. (A.6) and
(A.14)) for the asymptotic behavior of IR and IT are
indeed correct, we performed numerical integrations for
large j’s and found agreement. Due to the divergence
of the integrand, a particular set of transformations to
the integrals needs to be applied before it can reliably be
computed numerically. For more details, see reference [26].
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26. J. Odavić, Ph.D. thesis, RWTH Aachen University, 2019
27. V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer,
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