
Generalized W States and Nonlocal Magic
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Abstract

The complexity of quantum simulations does not arise from entanglement alone. The key

aspect of the complexity of the quantum state is shown to be related to non-stabilizerness or

magic [1]. The Gottesman-Knill theorem [2] shows that even some highly entangled states can

be simulated efficiently. Therefore, magic is a resource and represents the amount of

non-Clifford operations (e.g. T-gates) needed to prepare a quantum state.

We demonstrate, using Stabilizer Rényi Entropy [3], that degenerate quantum many-body

grounds states with nonzero lattice momentum admit an increment of magic compared to a

state with zero momentum [4]. We quantify this increment analytically and show how finite

momentum does not only increase the long-range entanglement [5] but also leads to a change

in magic. Additionally, we provide a connection between theW state and its generalizations,

frequently discussed in the quantum information community, and ground states of frustrated

spin chains.

Model and Physics – Frustrated anisotropic XYZ chain

■ We consider a spin chain subjected to non-extensive geometrical frustration
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▶ assume PBC σαL+1 = σα1 with and odd number of spins L = 2M + 1 (M ∈ Z), with
antiferromagnetic coupling → Frustrated Boundary Conditions (FBC) [6]

▶ There exists a threshold value |h| < h∗ for which the ground-state manifold is at least
two-fold degenerate and spanned by states with finite and opposite sign momentum
(chiral region) [7]

▶ Such a manifold is completely described in terms of the eigenstates of the momentum
operator P which is the generator of the translation operator T defined, i.e.
T : |Ψ⟩ → eiP |Ψ⟩, whose action shifts all the spins by one site in the lattice and
eiP ̸= 1

▶ Ground-state chirality can be characterize by the non-zero expectation value of

⟨Ψ|τ |Ψ⟩ = ⟨Ψ|σ⃗i−1(σ⃗i × σ⃗i+1)|Ψ⟩ (2)

■ Simpler examples of frustrated models
▶ frustrated Transverse Field Ising model (TFIM) Jy = Jz = 0 and
Jx = J → zero momentum GS

▶ frustrated XY chain Jz = 0 and Jx = 1+γ
2

and Jy = 1−γ
2

→ finite
momentum GS

Evaluation of magic - Stabilizer Rényi Entropy - SRE

To quantify the amount of non-stabilizerness for a generic state defined on a
one-dimensional system made of L qubits/spins, it is possible to use the
Stabilizer Rényi-2 Entropy (SRE) [3] that is defined as
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)
, (3)

where the sum of the r.h.s. runs over all possible Pauli strings P =
⊗L
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j , σ
x
j , σ

y
j , σ

z
j} where σ0

j stands for the identity operator on the
j-th qubit.

Results 1 – Exact results for SRE in finite systems

■ Locality: SRE well approximated from local quantities such as local
magnetization along the z-direction.
▶ In case of frustration the local magnetization reads
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(u) +
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L
,

implying that there is a correction (replacing ⟨σzj ⟩(u) = mz)
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▶ Similar to the magic at QPT!
■ For the zero momentum state we obtain [4]

M2(0, L) = 3 log2 (L) − log2 (7L− 6). (4)

■ For finite momentum we obtain (to be published)

M2(p, L) = − log2

−
11 − 12L+ sin ((2−4L)p)

sin (2p)

2L3

. (5)

Results 2 – From quantum information to condensed-matter physics

▶ theW state

|W⟩ =
1

√
L
(|100..0⟩ + |010..0⟩ + ...+ |000...1⟩ (6)

▶ theWk (kinkW ) state - single domain embedded into Néel states!
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▶ generalizedW state to finite momentum
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▶ generalizedWk state to finite momentum
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Results 3 – SRE as ‘order’ parameter in the thermodynamic limit

∆M2(L) ≡ M2(p, L) − M2(0, L) = log2

(
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)
(10)

In the thermodynamic limit, we obtain

lim
L→∞

∆M2(L) = log2

(
7

6

)
(11)

Figure: Comparison between chiraliry and SRE for finite system sizes in the classical limit of the
frustrated XY model (h → 0+). The chirality vanishes in the thermodynamic limit while SRE
stays finite (see Eq. 11).
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