Generalized W States and Nonlocal Magic

Jovan Odavić, G. Torre, T. Haug, A. Hamma, F. Franchini, S. M. Giampaolo Ruđer Bošković Institute, Zagreb (Croatia)

Entangle This: Randomness, Complexity and Quantum Circuits, Benasque (Spain) 2023

Abstract

The complexity of quantum simulations does not arise from entanglement alone. The key aspect of the complexity of the quantum state is shown to be related to non-stabilizerness or magic [1]. The Gottesman-Knill theorem [2] shows that even some highly entangled states can be simulated efficiently. Therefore, magic is a resource and represents the amount of non-Clifford operations (e.g. T-gates) needed to prepare a quantum state. We demonstrate, using Stabilizer Rényi Entropy [3], that degenerate quantum many-body grounds states with nonzero lattice momentum admit an increment of magic compared to a state with zero momentum [4]. We quantify this increment analytically and show how finite momentum does not only increase the long-range entanglement [5] but also leads to a change in magic. Additionally, we provide a connection between the W state and its generalizations, frequently discussed in the quantum information community, and ground states of frustrated spin chains.

Results 2 – From quantum information to condensed-matter physics

Model and Physics – Frustrated anisotropic XYZ chain

We consider a spin chain subjected to non-extensive geometrical frustration

$$H = \sum_{j=1}^{L} \left[J_x \sigma_j^x \sigma_{j+1}^x + J_y \sigma_j^y \sigma_{j+1}^y + J_z \sigma_j^z \sigma_{j+1}^z \right] - h \sum_{j=1}^{L} \sigma_j^z. \quad (1)$$

- ► assume PBC $\sigma_{L+1}^{\alpha} = \sigma_1^{\alpha}$ with and odd number of spins L = 2M + 1 ($M \in \mathbb{Z}$), with antiferromagnetic coupling \rightarrow Frustrated Boundary Conditions (FBC) [6]
- There exists a threshold value |h| < h* for which the ground-state manifold is at least two-fold degenerate and spanned by states with finite and opposite sign momentum (chiral region) [7]
- Such a manifold is completely described in terms of the eigenstates of the momentum operator P which is the generator of the translation operator T defined, i.e. $T: |\Psi\rangle \rightarrow e^{iP} |\Psi\rangle$, whose action shifts all the spins by one site in the lattice and $e^{iP} \neq 1$
- Ground-state chirality can be characterize by the non-zero expectation value of

 $\langle \Psi | au | \Psi
angle = \langle \Psi | ec{\sigma}_{i-1} (ec{\sigma}_i imes ec{\sigma}_{i+1}) | \Psi
angle$

(2)

Simpler examples of frustrated models

 \blacktriangleright frustrated Transverse Field Ising model (TFIM) $J_y = J_z = 0$ and

the
$$W$$
 state $|W
angle = rac{1}{\sqrt{L}}(|100..0
angle + |010..0
angle + ... + |000...1
angle$ (6) the W_k (kink W) state - single domain embedded into Néel states!

 $|W_k\rangle = \frac{1}{\sqrt{2L}} (|0010101...\rangle + |10010101...\rangle + ...|1010101...00\rangle + |110101010...\rangle + |01101010...\rangle + |01101010...\rangle + |0101010...11\rangle)$ (7)

$$\blacktriangleright$$
 generalized W state to finite momentum

$$|W_p
angle = rac{1}{\sqrt{N}} (e^{ip}|100..0
angle + e^{2ip}|010..0
angle + ... + e^{Lip}|000...1
angle$$

0

(11)

generalized
$$W_k$$
 state to finite momentum
$$|W_{kp}\rangle = \frac{1}{\sqrt{2L}} (e^{ip}|0010101...\rangle + e^{2ip}|10010101...\rangle + ...$$

$$+ e^{-ip}|110101010...\rangle + e^{-2ip}|01101010...\rangle + ...) \qquad (9)$$

Results 3 – SRE as 'order' parameter in the thermodynamic limit

 $J_x = J \rightarrow \text{zero momentum GS}$ frustrated XY chain $J_z = 0$ and $J_x = \frac{1+\gamma}{2}$ and $J_y = \frac{1-\gamma}{2} \rightarrow \text{finite momentum GS}$

Evaluation of magic - Stabilizer Rényi Entropy - SRE

To quantify the amount of non-stabilizerness for a generic state defined on a one-dimensional system made of L qubits/spins, it is possible to use the Stabilizer Rényi-2 Entropy (SRE) [3] that is defined as

$$\mathcal{M}_2(|\psi
angle) = -\log_2\left(rac{1}{2^N}\sum_P \langle\psi|\mathcal{P}|\psi
angle^4
ight),$$
 (3)

where the sum of the r.h.s. runs over all possible Pauli strings $\mathcal{P} = \bigotimes_{j=1}^{L} P_j$ for $P_j \in \{\sigma_j^0, \sigma_j^x, \sigma_j^y, \sigma_j^z\}$ where σ_j^0 stands for the identity operator on the j-th qubit.

Results 1 – Exact results for SRE in finite systems

- Locality: SRE well approximated from local quantities such as local magnetization along the *z*-direction.
 - In case of frustration the local magnetization reads

$$\Delta \mathcal{M}_2(L) \equiv \mathcal{M}_2(p,L) - \mathcal{M}_2(0,L) = \log_2\left(rac{7L-6}{6L-6}
ight)$$
(1

In the thermodynamic limit, we obtain

$$\lim_{L o\infty} \Delta \mathcal{M}_2(L) = \log_2\left(rac{7}{6}
ight)$$

$$\langle \sigma_j^z
angle^{(f)} = \langle \sigma_j^z
angle^{(u)} + rac{2}{L},$$

implying that there is a correction (replacing $\langle \sigma_j^z
angle^{(u)} = m_z$)

$$\mathcal{M}_2(0,L)\simeq L\log_2\left(rac{1+m_z^2}{1+m_z^4}
ight)+4m_z\left(rac{1}{1+m_z^2}-rac{2m_z^2}{1+m_z^4}
ight).$$

Similar to the magic at QPT!
For the zero momentum state we obtain [

For the zero momentum state we obtain [4]

$$\mathcal{M}_2(0,L)=3\log_2{(L)}-\log_2{(7L-6)}.$$

For finite momentum we obtain (to be published)

$$\mathcal{M}_2(p,L) = -\log_2\left(-rac{11 - 12L + rac{\sin\left((2-4L)p
ight)}{\sin\left(2p
ight)}}{2L^3}
ight).$$
 (5)

Figure: Comparison between chirality and SRE for finite system sizes in the classical limit of the frustrated XY model ($h \rightarrow 0^+$). The chirality vanishes in the thermodynamic limit while SRE stays finite (see Eq. 11).

This work is supported by the Croatian Science Foundation under the grants

HRZZ-UIP-2020-02-4559 and HRZZ-IP-2019-4-3321.

References

(4)

- [1] S. Bravyi and A. Kitaev, Physical Review A **71**, 022316 (2005).
- [2] S. Aaronson and D. Gottesman, Physical Review A **70**, 052328 (2004).
- [3] L. Leone, S. F. Oliviero, and A. Hamma, Physical Review Letters **128**, 050402 (2022).
- [4] J. Odavić, T. Haug, G. Torre, A. Hamma, F. Franchini, and S. M. Giampaolo (2022), accepted in SciPost.
 [5] L. Gioia and C. Wang, Physical Review X 12, 031007 (2022).

[6] S. M. Giampaolo, F. B. Ramos, and F. Franchini, Journal of Physics Communications 3, 081001 (2019).
[7] A. G. Catalano, D. Brtan, F. Franchini, and S. M. Giampaolo, Physical Review B 106, 125145 (2022).