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Abstract. We study the statistical fluctuations of Lyapunov exponents in the
discrete version of the non-integrable perturbed sine-Gordon equation, the dis-
sipative AC- and DC-driven Frenkel–Kontorova model. Our analysis shows that
the fluctuations of the exponent spacings in the strictly overdamped limit, which
is nonchaotic, conform to an uncorrelated Poisson distribution. By studying the
spatiotemporal dynamics, we relate the emergence of the Poissonian statistics
to Middleton’s no-passing rule. Next, by scanning values of the DC drive and
the particle mass, we identify several parameter regions for which this one-
dimensional model exhibits hyperchaotic behavior. Furthermore, in the hyper-
chaotic regime where roughly fifty percent of the exponents are positive, the
fluctuations exhibit features of the correlated universal statistics of the Gaussian
orthogonal ensemble (GOE). Due to the dissipative nature of the dynamics, we
find that the match between the Lyapunov spectrum statistics and the universal
statistics of GOE is not complete. Finally, we present evidence supporting the
existence of the Tracy–Widom distribution in the fluctuation statistics of the
largest Lyapunov exponent.
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1. Introduction

Matrices with random entries have interested physicists for a long time. The simple
reason for this is that many complex and strongly-correlated many-body problems,
which can be formulated in terms of ensembles of such random matrices, are found to
be analytically tractable due to the underlying symmetries that these matrices entail [1].
Starting with the work of Wigner [2], ensembles of such ‘integrable’ Hamiltonians have
been shown to naturally emerge in fields such as nuclear physics, disordered systems,
string theory, transport phenomena and many others [3–5].

Random matrix theory (RMT) is a scientific discipline that involves the study of
the particular universal features displayed by an ensemble of random matrices when
the size of the matrix N →∞. When the matrix entries are independently and iden-
tically distributed (i.i.d.) random variables and the matrices are rotationally invariant,
three universality classes or ensembles of correlated random matrices exist and are desig-
nated as Gaussian ensembles. Matrices with [N ×N ] real symmetric random entries are
known as Gaussian orthogonal ensembles (GOEs), [N ×N ] complex Hermitian matrices
are known as Gaussian unitary ensembles (GUEs), and [2N × 2N ] self-dual Hermitian
matrices are known as Gaussian symplectic ensembles (GSEs). In the process of diago-
nalization of the matrices just mentioned, the eigenvalues become correlated and each
eigenvalue ‘feels’ the presence of the neighboring eigenvalues, leading to the phenomenon
of level repulsion [6]. In the asymptotic N →∞ limit the eigenvalue distributions of such
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ensembles conform to the famous semi-circle law, while the eigenvalue spacing distribu-
tion follows Wigner’s universal surmise [1, 7]. An interesting variation to the standard
Gaussian ensembles includes the [N ×N ] Wishart matrix W = XTX, where X is a
rectangular [N ′ ×N ] matrix with i.i.d. entries, resulting in the Marchenko–Pastur law
[8]. In the case where the eigenvalues are themselves i.i.d. random values (i.e. uncorre-
lated) with finite variance, their distribution due to the central limit theorem follows a
normal (Gaussian) distribution. In this case, the eigenvalue spacings follow a Poisson
distribution. To generate such an eigenvalue distribution, it is sufficient to diagonalize
matrices with i.i.d. values sampled from the Gaussian distribution only along the main
diagonal, e.g. see [9].

Recently, the presence of universal statistics of random matrix ensembles in the Lya-
punov exponent spectrum has been demonstrated in the classical limit of the matrix
model of D0-branes [10, 11] with conservative dynamics. The Lyapunov exponents mea-
sure the average exponential rate of the divergence of neighboring orbits in phase space.
They are considered an indispensable tool for detecting the presence of chaos in dynamic
systems [12]. The Lyapunov exponent distribution in the above mentioned supersym-
metric model, used by the string theory community, was shown to follow the semi-circle
law. Furthermore, in the Kuramoto model of N oscillators with a variable coupling
matrix, similar findings have been reported, where the presence of a Poisson or Wigner
surmise distribution in the Lyapunov exponent spacings is taken to be an indicator of
synchronization behavior [13]. Historically, the authors of [14] were the first to show
the existence of neighboring Lyapunov exponent repulsion, hinting at the similarities
between the behavior of Lyapunov exponents and Gaussian RMT ensembles.

Motivated by the abovementioned findings, we proceed to show the existence of
correlated random matrix ensemble features in a typical condensed-matter model, the
classical nonlinear and hyperchaotic dynamic system with dissipative dynamics, the
AC- and DC-driven Frenkel–Kontorova (FK) model. Moreover, within the same model,
and for a particular choice of parameters when the system is nonchaotic, we show the
presence of Poissonian statistics in the Lyapunov exponent spacings. We choose to work
with this model because of its clear physical interpretation and enormous applicability to
various existing physical systems [15]. This model represents an appropriate theoretical
framework for the description of charge- and spin-density wave transport, irradiated
Josephson-junction arrays, and driven colloids [16–18], Later in this paper, we show
that the model considered in the regime where its Lyapunov exponents exhibit repulsion
is equivalent to a realistic one-dimensional parallel array of Josephson junctions (JJs)
with a stripline geometry [19].

The Lyapunov exponents are typically defined as the singular value decomposition
values of the Jacobians of the linearized dynamics. The Jacobian that governs the behav-
ior of the perturbed trajectories at the end of the time evolution of a dynamic system
is composed of the product of such Jacobians at previous time steps [20, 21]. From this
point of view, the eigenvalue statistics of the product of random matrices and Lyapunov
exponent statistics are closely related; see [22] and references therein. Making use of
this connection, a computation of the complete Lyapunov exponent spectrum has been
approximately performed for the Fermi–Pasta–Ulam chain of oscillators [23]. Our work,
on the other hand, is focused on identifying different dynamic regimes in the spatially
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extended dissipative and AC- and DC- driven FK model from the Lyapunov spectrum.
In this endeavor, we compare the Lyapunov exponents’ fluctuations to the predictions
of RMT.

This paper is organized in the following way. In section 2.1, we present the model
and discuss the interesting regimes and model-specific nomenclature used in the paper.
Next, in section 2.2, we discuss how the Lyapunov exponent spectrum is defined and its
particular importance. In section 3, we present the results of our study using techniques
from both RMT and the nonlinear dynamics community. We conclude in section 4.

2. Model and method

2.1. The model

The standard Frenkel–Kontorova (FK) model represents a chain of harmonically inter-
acting identical particles with positions {ui} subjected to a sinusoidal substrate potential
with amplitude K

V (u) =
K

4π2
[1− cos(2πu)] , (1)

and it is defined by the Hamiltonian

H =
∑
i

(
m

2
u̇2
i +

1

2
(ui+1 − ui − a0)

2 + V (ui)

)
, (2)

where m represents the mass of the point-like particles each indexed by the subscript
i, while a0 is the equilibrium distance of the inter-particle potential. After suitable
renormalization of the model parameters and by neglecting the discreteness effects, the
standard FK model reduces to the well-studied integrable sine-Gordon (sG) equation
[15]. sG is applicable in a wide range of physical systems from JJs to gravity and high-
energy physics [15, 24]. Systems that are described by the sG equation are known to
support excitations such as topological solitons (kinks) and dynamic solitons (breathers)
and attract a lot of attention from physicists despite/for being integrable. The sG
equation can be extended in different ways. For instance, a common and useful exten-
sion is the perturbed sG equation. Depending on the physical system and interpretation,
the perturbation is typically a damping term that breaks the integrability. A particular
version of the perturbed sG equation that includes both damping and a driving term
has been successful in describing long JJs [25].

In our work, we focus on the dissipatively driven FK model, i.e. a discretized version
of the perturbed sG equation, which is also non-integrable and exhibits more complex
dynamics compared to the sG equation and the standard FK model. Such a model is used
to describe phenomena in many different physical systems [15, 26–29]. The equations of
motion of the dissipatively driven FK model of N identical particles have the following
form

müi = ui+1 + ui−1 − 2ui −
∂V

∂ui

− u̇i + F (t), (3)
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Figure 1. Sketch of the AC- and DC-driven Frenkel–Kontorova model defined by
equation (2) and the equations of motion given in equation (3). The harmonically
interacting particles are featureless point-like masses.

where u̇i defines the dissipative term, i labels particles i = 1, . . . ,N , and F (t) is the
driving force chosen in the form F (t) = F dc + F ac cos(2πν0t) (see figure 1). We impose
cyclic boundary conditions using u0 = mod(uN ,Nω), where ω represents the interpar-
ticle average distance, i.e. the average number of particles per substrate potential well
[27, 30]. In literature, different regimes have been identified to exist in this model, such
as the m→ 0 limit of equation (3) which defines the strictly overdamped limit [31], the
overdamped regime for which 0 < m � 1

4(2+K)
, and the underdamped regime otherwise

[32]. To integrate the system of equation (3), we use the standard techniques described
in [33] with a time step of ν−1

0 and a relative tolerance of 10−6.
Due to the exertion of the force term F (t), the dissipative FK model undergoes a

dynamic phase transition from a pinned regime to the sliding particle motion regime
[30, 34]. The study of critical force dynamics is an active field of research related to the
description of different interesting phenomena in tribology, the traffic flow of cars on
a road, and many others [15]. In our work, we primarily investigate the physics of the
sliding regime where the system’s response is strongly nonlinear and the dynamics is
richer.

In the underdamped regime, the dissipatively driven FK model exhibits sensitivity
to the initial conditions [35], i.e. chaotic dynamics, whereas in the strictly overdamped
limit, the system is nonchaotic [17, 30]. In the following section, we describe how the
presence of chaos is quantified using Lyapunov exponents.

2.2. Spectrum of Lyapunov exponents

Lyapunov exponents (LEs) are an essential diagnostic tool for the stability of attractors
and the presence of deterministic chaos in dynamic systems. They quantify the average
exponential rates of divergence (or convergence) of neighboring orbits in phase space
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[12]. An ordered set of LEs {λ1,λ2, . . . ,λn} forms a spectrum where the cardinality of
the set n matches the number of degrees of freedom of the system. If the system has at
least one positive LE, the system is chaotic, and if we order the spectrum such that λ1 �
λ2 � . . . � λn↪ the maximal (largest) Lyapunov exponent is then λmax = λ1. Moreover, if
multiple exponents are positive, the dynamics are designated as hyperchaotic [36, 37].

To numerically estimate the exponents, a set of linearized equations with perturbed
initial conditions is solved. If ui(t) are the particle trajectories, the perturbed trajectories
δui(t) are determined by the successive application, at each time step, of the linear
propagators Ji,j (the Jacobian) to the initial perturbed positions δui(0) according to

δui(t) =
∑
j

Ji,j(t, 0)δui(0). (4)

The finite-time LEs are defined as

λi(t) = lim
‖δ‖→0

1

t
ln

‖δui(t)‖
‖δui(0)‖

, (5)

and also represent the eigenvalues of the Jacobians. In our work, we examine the fluc-
tuations of finite-time LEs around their converged (or ‘asymptotic’) limit and after the
system has reached the steady-state dynamic regime.

To compute the LE spectrum, we employ the algorithm from [20], first proposed in
[38, 39]. This particular algorithm was shown to be sufficiently accurate in the com-
putation of the LEs and the associated eigenvectors for a multitude of systems, both
conservative and dissipative [40].

As a criterion to determine when the LE spectrum is numerically converged, we take
the following average relative error estimate

δλ(tj)

N
=

1

N

N∑
i=1

∣∣∣∣λi(tj)− λi(tj−1)

λi(tj)

∣∣∣∣ < 5× 10−3, (6)

where tj = 5jν−1
0 . This particular convergence criterion choice is made empirically by

minimizing the trade-off between execution costs and precision. However, enforcing
higher precision does not change our main results but rather changes the scale of the
phenomenology we report on. In figure 2, we illustrate how the LE spectrum evolves and
converges over time for a typical parameter set. In the top panel, we see that the individ-
ual exponents reach their ‘asymptotic’ values in a consistent manner which is captured
by the relative error estimate δλ/N (bottom panel). For the model under study, we
performed the Gram–Schmidt orthonormalization of the linearized basis at every time
step [20]. The difference between the usual application of local (finite-time) LEs and the
way we calculated the exponents (see equation (6) for comparison in [41]) is that our
evaluation interval is very short, i.e. of the same order as the time step we take. As we
take the LE measurements in the steady-state dynamic regime, the evaluation interval
can indeed be this short.

In the underdamped regime, the equations of motion are second order (see
equation (3)), and to integrate them, we instead solve two sets of N first-order dif-
ferential equations. Therefore, the size of the Jacobian matrix from equation (4) is
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Figure 2. Time evolution of Lyapunov exponents λi(t) (top) and from equation (6)
the average relative error δλ

N (bottom) for the dissipative driven FK model with
parameters N = 50, ω = 1/2, F ac = 0.2, ν0 = 0.2, K = 4, m = 1, F dc = 0.17.

[2N + 1, 2N + 1], where the last equation is reserved for time. This amounts to the
simultaneous solution of (2N + 1)× (2N + 1) linear and 2N + 1 nonlinear first-order
differential equations. In our study of the underdamped regime, we exclusively focus on
the N largest exponents out of the total 2N number of exponents. In appendix A, we
describe the motivation for this choice. However, in the strictly overdamped case, the
total number of first-order equations (linear + nonlinear) is, instead, (N + 2)× (N + 1),
which requires a separate implementation. Moreover, in this case, the particles are iner-
tialess and half of the available phase space directions are neglected, making the total
number of exponents N . We verified that by working with equation (3) and slowly
approaching m→ 0 we can obtain the results of the strictly overdamped limit with a
precision allowed by our integration routines (see also section 3 and figure 4).

The magnitude of the LEs measures the rate at which the system becomes unpre-
dictable and how fast the information about the initial state gets scrambled [10]. The
largest LE can be related to the reversibility of the dynamics and the Loschmidt echo,
e.g. [42–44]. In the strictly overdamped limit of the FK model, the largest LE at van-
ishing DC driving was shown to be in close relation to the critical depinning force [30].
Moreover, in the JJ array systems, the critical depinning force is analogous to the crit-
ical current [34], therefore the study of the largest LE is of principal importance. By
contrast, in the Kuramoto model, the characteristics of the LE spectrum are used to
distinguish between different dynamic regimes [13]. Similarly, we identify GOE features
(see sections 3.1, 3.2, 3.4 and 3.5) in the dissipatively driven FK model and show how we
can identify several different dynamic regimes from the LE spectrum (see section 3.3).

3. Results

The fact that the dissipatively driven FK model exhibits hyperchaotic features, i.e. it is
a dynamic regime with more than one positive LE, was already highlighted in [35]. In
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Figure 3. Percentage of positive LEs as a function of the DC force F dc and the
mass of particles m, for parameters N = 10, ω = 1/2, ν0 = 0.2, K = 4. The force
and mass step used are ΔF = 10−3 and Δm = 5× 10−3, respectively. (Left) DC
system with F ac = 0. (Right) AC and DC system with F ac = 0.2 where the vertical
black dashed line is at F dc = 0.27. The parameter regimes along the dashed line
are examined later (see section 3.1).

this paper, we perform a deeper study of this interesting phenomenon and present new
results related to the complex dynamic landscapes that emerge from this apparently
simple model.

In figure 3, we show a heatmap of the results of a scan over the mass m and DC
force parameter F dc. By measuring the percentage of positive LEs in the spectrum, we
can identify several different parameter regimes that lead to strongly chaotic dynam-
ics. In the left panel, the results for a DC system (F ac = 0) are shown, and in the
right panel, those of an AC and DC system (F ac = 0.2) are presented. In both cases,
the dynamic landscapes exhibit large periodic phases (dark blue regions) with smaller
chaotic windows (light blue to red regions).

We now additionally comment on the consistency of our calculations and numerical
implementations. In particular, from [35], we know that whenever λmax > 0 the sys-
tem typically exhibits collective motion measured by the response function v̄, which is
defined as

v̄ = 〈〈u̇i(t)〉〉T ,N = lim
T→∞

1

TN

N∑
i=1

ts+T∫
ts

u̇i(t)dt 	= 0, (7)

where ts is the elapsed transient time, i.e. the time needed for the system to reach
a steady state. Knowing this, we can be confident that our numerical integration of
equation (3) and the LE spectrum computation in section 2.2 are correctly imple-
mented. More specifically, we know that in the AC and DC strictly overdamped limit, the
dynamic phase transition from the pinned regime to the sliding particle motion regime
for the parameters specified in the captions of figure 3 happens at around F dc ∼ 0.16
[30, 31] (see also the top panel of figure 4). The results for the underdamped system
in the right panel of figure 3 show that such a transition indeed happens in the m→ 0
limit where the chaotic patch shrinks towards this particular critical depinning force.

In both the DC-only case and the AC and DC case, a regime with strong intermittent
chaotic behavior is present. Alternations between chaotic and periodic windows happen
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Figure 4. Average velocity v̄ (top) and maximal (largest) Lyapunov exponent
λmax (bottom) as a function of the DC driving force F dc for five different masses
and the strictly overdamped limit. Parameters used: N = 10, ω = 1/2,
F ac = 0.2, ν0 = 0.2, and K = 4 with a DC force step ΔF dc = 4× 10−3.

for 0.2 < F dc < 0.26 with very small changes in the mass parameter. This means that
the pinning-to-sliding transition in this model is more complex than previously thought.
Therefore, going further with our analysis, we will focus on parameters that lead to
dynamics deep inside the sliding regime where such intermittent behavior does not
dominate the physics and stable phases are present, i.e. same-colored islands in the
heatmap of figure 3. The AC and DC case exhibits larger and more robust islands. Due
to this fact, the model that includes both AC and DC driving is the subject of our
further investigation.

To illustrate the different dynamic regimes present in the driven FK model, in
figure 4, we plot the response function v̄(Fdc) (upper panel) and the largest Lyapunov
exponent λmax(F dc) (lower panel). With a decrease in the mass parameter m→ 0, the
response function and also the LEs converge towards the results for the strictly over-
damped model and are consistent with the standard literature [31]. We note that we
neglect any hysteresis effects in the response function by independently running the
calculations for each particular F dc [35].

We checked that for a larger driving frequency, e.g. ν0 = 0.4, the chaotic behavior is
more pronounced, and the chaotic regions are larger. According to [45] and the author’s
work on the related model of a JJ array, chaotic behavior is only present within a partic-
ular frequency parameter window, and the size of this window is related to McCumber’s
parameter. Due to the obvious equivalence of the models, in our model, the size of this
window is related to the mass m. Moreover, performing calculations for larger AC forces
leads to hyperchaotic islands that are already present for smaller F ac. Additionally, the
coupling between junctions in the related model of JJ arrays has been shown to play an
important role in inducing chaotic behavior [46].

To answer a commonly asked question regarding the commensurate dynamics of
the FK model, a small particle number is typically used [15, 26]. More specifically, for
fixed ω, N � 10 is shown to be sufficient to measure the system’s response function
v̄(Fdc) and to establish whether the system is chaotic or not [17] (also see figure 4),
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Figure 5. Histogram of the LE spectrum for different numbers of particles N = 10,
50 for a large number of realizations M = 105, 104, respectively. The number of
histogram bins is 100. In (a), m = 1.582 and in (b), m = 4.653 while F dc = 0.27
applies to both. The remaining parameters used are as stated in figure 4. Further
details are given in section 3.1.

and these results would carry also over and be valid for N > 10 cases. However, deep
inside the underdamped regime, the physics (for the considered system sizes) changes
with the particle number. In particular, the percentage of positive LEs changes. Luckily,
the change in the number of positive LE exponents with N is gradual. That is why
we compute the heatmap with only N = 10, as presented in figure 3, with the expec-
tation that similar (to within a few percent) chaotic content will be present in larger
systems.

The presence of hyperchaoticity implies that information about the initial state of
the system gets scrambled along with several directions in the phase space and the
existence of a higher-dimensional attractor structure. The LE spectrum and its associ-
ated attractor are characterized by their fractal dimensions, correlation exponents, and
information dimensions. Quantities such as the Kaplan-York dimension, which measures
the information content of a dynamic model, can be computed. In addition, the sum of
positive LEs is known to be related to Kolmogorov-Sinai entropy and the growth rate
of entropy [20]. In this paper, we do not try to answer questions about information and
entropy but rather focus on the statistics of the LE spectrum, which exhibit certain
features of Gaussian random matrix ensembles [1–6].

To that end, we now comment on the consistency of the large degree of freedom limit
N →∞ of this discrete model. Taking this limit is equivalent to an investigation of the
perturbed sG equation itself. To achieve a reasonably ‘smooth’ LE spectrum distribution,
a sufficiently large number of particles have to be employed. This is obvious from the
plot of the LE spectrum histogram in figure 5 for an increasing number of particles N .
For N = 10, the histograms and the corresponding distributions are not smooth enough
to be compared to the explicit asymptotic results in RMT.

We already found that for N = 50, the LE spectrum contains all the main features
which are present for much larger particle numbers with similar statistics. For example,
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Figure 6. Normalized LE spectrum density at F dc = 0.27, ω = 1/2, F ac = 0.2 and
ν0 = 0.2 for different masses: (a) m = 0, N = 400, and M = 790; (b) m = 0.5,
N = 100, and M = 2265; (c) m = 1.582, N = 100, and M = 4607; (d) m = 2.3,
N = 100, and M = 610; (e) m = 3.298, N = 100, and M = 4189 and finally (f)
m = 4.75, N = 100, and M = 66370. The corresponding averages are: (a) λ̄ �
−0.995, (b) λ̄ � −0.684, (c) λ̄ � −0.177, (d) λ̄ � −0.133, (e) λ̄ � −0.026, and
(f) λ̄ � −0.006. The dark blue lines are the fits obtained via equation (8) and each
one represents the probability density function (PDF) of the respective spectrum.
The number of histogram bins is 100.

in figure 5, only small fluctuations around the left tail of the distribution can be observed
when the particle number is doubled. These fluctuations influence the output of the
unfolding procedure discussed in section 3.2, but the cost of integrating a system with
N degrees of freedom and 2N dynamic variables scales according to ∼N 2 and the added
precision does not warrant the steep computational cost. Therefore, for our scientific
purposes of pointing out the similarities between the LE spectrum of a dissipative system
and RMT ensembles, a lower precision can be justified. Nevertheless, in the following,
to decrease the finite-size effects even further, we typically use N = 100 particles.

3.1. Normalized Lyapunov spectrum density

In figure 6, we present the results for the normalized LE spectrum as a function of the
mass term m. We fix the driving force at F dc = 0.27 and N = 100 and the remaining
parameters are set to the values given in the captions of figure 3 (except for the strictly
overdamped limit, for which N = 400). For this parameter choice, the system exhibits
a collective motion v̄ 	= 0, as can be observed in the upper panel of figure 4.

The histograms (blue rectangles) in figure 6 are generated for a large number of
realizations M at t = 0, and after the system has reached the steady state and fulfilled
the convergence criterion from equation (6). The initial conditions are chosen such that
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the particle positions have a Gaussian distribution with a mean μ = N/2 and a standard
deviation σ is selected such that the particles symmetrically fall into the domain [0,Nω].
Additionally, the initial velocities of the particles are set to be equal to zero. Drawing
the initial particle positions from a uniform distribution in the same domain yields
equivalent results for the LE spectrum.

The dark blue lines in the figures represent the fit of the histogram data to a higher-
order polynomial

ρ(λ, λ̄) =

kmax∑
k=0

ak(λ− λ̄)k, (8)

where kmax is chosen based on the details of the spectrum. In particular, the more
local maxima the distribution has, the larger the kmax that is required. For example,
for m = 4.75 depicted in figure 6(f), the choice kmax = 10 accurately approximates the
distribution [11]. The fit is centered around λ̄ which is defined as the ensemble average

λ̄ = 〈〈λi,j〉〉N ,M =
1

NM

M∑
j=1

N∑
i=1

λi,j, (9)

where j specifies the initialization. The fitted lines do not capture the extremely detailed
structure of the spectrum for smaller masses, e.g. (b) and (c) in figure 6. This influences
the unfolding procedure we use in section 3.2. However, for the most interesting cases
such as (a) and (f), this imprecision does not play a role.

With an increase of m and for fixed F dc (along the vertical dashed line in the right
panel of figure 3), the normalized LE spectrum undergoes a transition from a regime
where all the exponents are negative, to a regime where half of the spectrum is positive.
From figure 6, it can be seen that the normalized LE spectrum does not follow any
characteristic function or rule other than slowly moving to the positive domain for an
increasing mass term. For the particular island (a dark orange patch in the heatmap)
with roughly fifty percent of positive LEs where λ̄→ 0−, we observe a distribution that
resembles a semi-circle law. This is also nicely illustrated in figure 5(b) for the case
N = 50.

Similar findings, but in conservative models, have been reported in [10, 13], where
the authors make a connection between the LE spectrum and RMT. They identify the
semi-circle law which is symmetric around λ̄ = 0 and which, under appropriate rescaling,
matches the semi-circle law and that of GOE [6]. We argue that in a dissipative dynamic
model such as the underdamped FKmodel, the features of GOE are present, even though
we are not able to fit our results to the semi-circle due to dissipation that forces the
spectrum to have a negative mean. In the following sections, we use diagnostic tools
common in the RMT literature to do so.

3.2. Normalized Lyapunov spectrum spacings

Conventionally, in the study of RMT and related problems, the nearest-neighbor spacing
distribution is generated from the eigenvalue spectrum. Rather than the eigenvalue
spectrum density, the distribution of eigenvalue spacings is typically regarded to be

https://doi.org/10.1088/1742-5468/abed46 12

https://doi.org/10.1088/1742-5468/abed46


J.S
tat.

M
ech.

(2021)
043204

Random matrix ensembles in hyperchaotic classical dissipative dynamic systems

universal [4]. For our particular purposes, it is sufficient to present the following relevant
PDFs:

PPoisson(s) = e−s uncorrelated, (10)

PGOE(s) =
πs

2
e−

π
4 s

2

correlated, (11)

where similar expressions exist for the remaining correlated Gaussian ensembles
[47]. Equation (11) is recognized as Wigner’s surmise in the RMT literature, while
equation (10) is the well-known Poisson distribution.

LEs can be viewed as eigenvalues that characterize chaotic, periodic, and quasiperi-
odic motion [14, 48]. Therefore, by treating them as such, the corresponding PDF can
be computed. In our case, P (s) represents the probability density that two consecutive
LEs have a spacing of s, and, like any PDF, it is normalized to unity. Typically, the
spacings represent an order set of

s̃i′,j = λi′+1,j − λi′,j , (12)

for the realization j = 1, 2, . . . ,M . In practice, the LE spacing PDF is obtained from
the normalized histogram of si′,j values as

si′,j ≡ N ·
(
R(λi′+1,j , λ̄)−R(λi′,j , λ̄)

)
, (13)

where i′ = 1, 2, . . . ,N − 1 and with the help of the cumulative spacing distribution
R(λ, λ̄) defined as

R(λi′,j , λ̄) =

λi′,j∫
λ̄

ρ(λ′)dλ′. (14)

In the RMT literature, this particular way of computing the spacing PDF is known
as the ‘unfolding’ procedure. The unfolded LE spectrum, computed using equation (13),
can now be directly compared to equations (10) and (11), and the results are presented
in figure 7. Note the difference between the definitions of s and s̃.

In the strictly overdamped regime (see figure 7(a)), the unfolded spectrum histogram
is consistent with a Poisson distribution. Small fluctuations exist, but the LE spectrum
spacings in the s→∞ limit convincingly follow equation (10). However, to achieve this
identification, a large number of particles (N = 400) had to be used to obtain an LE
spectrum that was sufficiently smooth. With a further increase in the particle number,
we expect the spacing spectrum to move progressively closer and closer to the Poisson
distribution, as it already showed this tendency for N < 400 with increasing N . We
further comment on the physics of this regime in section 3.3.

In the underdamped regime and for m = 0.5, 1.582, 2.3, the unfolded separation dis-
tribution does not follow Poisson’s law or Wigner’s surmise; see figure 7(b)–(d). For
m = 0.5, the system exhibits similar periodic behavior to that of the m = 0 case, and
this is the reason why, for s > 2, the separations between LEs appear to have a Poisson
distribution. We checked that regions with similar levels of chaos conform to similar
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Figure 7. The unfolded LE spectrum histograms obtained using equations (13)
and (14). The parameters used in the simulations are the same as in figure 6. The
red dashed line is the Poisson distribution and the full line is Wigner’s surmise,
described by equations (10) and (11), respectively. Further details are given in the
text.

distributions, i.e. regions with the same color in the heatmap in figure 3 have equivalent
LE spectra and spacings.

As the mass is increased, the system enters hyperchaotic regimes. In figure 7(e), we
observe a distribution depletion in the 0 < s < 1 range, which signifies that repulsion
between the LEs occurs. LE repulsion was first observed in [14], in a conservative model
which was used to describe a periodically kicked rotator. In the parameter regime where
this model exhibits hyperchaos, the act of coupling between nearest-neighbor standard
maps introduces LE repulsion. Before coupling, this model was already hyperchaotic
but did not exhibit any LE level repulsion, hinting at the fact that coupling plays
an extremely important role in generating a spectrum that exhibits correlated RMT
ensemble features. In the same paper, the authors mentioned that dissipative models also
exhibited similar behavior, but in our work, we provide explicit evidence for this. In the
dissipatively driven FK model, the coupling between particles is the nearest neighbor and
is not treated as a parameter (see equation (3)). Therefore, any hyperchaotic behavior
within such a model is expected to exhibit LE repulsion.

For m = 4.75 in figure 7(f), the unfolded spectrum has an even stronger repul-
sion as s→ 0, compared to the other sampled cases. This parameter point sits in the
already mentioned hyperchaotic regime and has roughly 50% positive exponents (the
dark orange region in figure 3). In this case, P (s) follows the Wigner surmise perfectly
for s > 2, indicating that this distribution is more similar to equation (11) than (10).
The maximal height of the distribution matches that of the GOE as well, but it is shifted
to the right. We attribute the lack of a persuasive overlap to the dissipative dynamics
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that force the LE spectrum to have an asymmetric distribution. The fact that the phase
space volume is not conserved through time evolution leads to this shifted peak in the
unfolded spectrum. We take this as an indication that, in the dissipative system, the LE
spectrum might be not described by a pure GOE ensemble but rather by an ensemble
mixture of GOE and Wishart ensembles [6]. We can observe an additional hint of this
in figures 6(e) and (f). In particular, the left tail of the normalized density ρ(λ) shows
similar behavior to the Marchenko–Pastur law [6, 8].

The lack of strong LE repulsion as s→ 0 cannot be exclusively attributed to the
dissipative nature of the dynamics in our study. Inspecting the LE spectrum in more
detail, we often observe pairs of LEs to be present. These exponents are equivalent up to
two or three decimal digits and continue to be so with an increase in the system size N .
This kind of ‘near degeneracy’ has also been observed in chains of Rössler oscillators and
is attributed to the (discrete) translational symmetry of the model [21]. Similarly, we
argue that, due to this fact and the inherently fluctuating nature of finite-time Les, the
Lyapunov vectors tend to align in the same directions in phase space, producing near
degeneracy and ultimately a lack of complete LE repulsion. This is typically thought
to be a spurious and subtle problem of numerical accuracy in the method used to
obtain the LEs. For a definite and consistent analysis, the Lyapunov vectors have to be
computed. This kind of analysis would also potentially explain why, in the conservative
system of coupled Kuramoto oscillators, similar features are present, see figure 4 of [13].
Conversely, for an explanation of why and how these features are not present in the
classical D0-brane model, see figure 1 [11].

3.3. Particle trajectories

In previous studies of the dissipatively driven FK model, the particle trajectories pro-
vided valuable information about the presence of chaos. Insight into the spatiotemporal
dynamics of the system is used, for example, in [49], to supplement the use of common
tool such as LEs for chaos detection.

In figures 8(a)–(c), we plot the particle trajectories over time for different particle
masses in the moving reference frame for visual clarity. A moving frame is used because
the system is in the sliding regime where the particles exhibit collective motion related
to the AC and DC driver, see figure 4. In the remaining figures of figures 8(d)–(f), the
corresponding LE spectrum is presented.

When the system is in the strictly overdamped regime (m = 0), i.e. when the inertial
term is negligible in comparison to the damping term, individual particles act as impen-
etrable hard spheres. In figure 8(a), this is depicted clearly, where, in the steady-state
regime, each particle feels the neighboring particles but they never exchange places and
break the ordering at the initial time. Even in the transient regime, the particle order
is preserved. To specify when two particles trajectories cross and particles break the
initial time ordering, we used red crosses, and no red crosses are shown in the strictly
overdamped regime. This is because, in this regime, the physics of the model is subject
to Middleton’s no-passing rule [50].

Middleton’s no-passing rule refers to the order-preserving nature of the underlying
dynamics in the presence of convex interparticle interactions and is extensively exploited
to gain analytical insight into complex dynamics [27]. Under such an assumption, if two
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Figure 8. A single realization of particle trajectories for different mass parameters:
(a)m = 0, (b)m = 2.047, and (c)m = 4.653 at a fixed DC force F dc = 0.27 ; the
remaining parameters are as defined in figure 2. The trajectories are plotted in the
moving frame (sliding regime), for visual clarity. We used the periodic boundary
conditions mentioned in section 2.1. Red crosses denote the occasions when particles
break the initial time ordering.

configurations are initially ordered u = (ui)i∈N and ũ = (ũi)i∈N, e.g. u � ũ (where� refers
to each particle position ui � ũi∀ i) then this ordering persists through time evolution
[51]. This means that the system does not evolve towards less complexity than it already
possessed at the initial time. In [30], it was argued that this rule is related to the absence
of chaotic behavior. We now provide further evidence that this is indeed the case and
additionally claim that it leads to Poissonian statistics in the LE spectrum. Explicit
evidence can be found in figures 6(a), 7(a), and 8.

Intuitively, in the strictly overdamped regime, the ‘avoided crossing’ behavior of
particle trajectories leaves less phase space for each of them to explore. This restricted
phase space means that LEs are left with less variability and therefore the exponent
values can and must be close together (but are not degenerate). This is nicely illustrated
by the unfolded LE spectrum P (s) of figure 7(a) as s→ 0. In the underdamped regime,
the available phase space is larger and LEs have inherently larger separations between
them, which thereby justifies LE ‘repulsion’, i.e. the suppression of the P (s) weight when
s→ 0; see, e.g. figure 7(f).

In the underdamped regime, due to the presence of the inertial term, the particles
can overcome the harmonic interparticle repulsion and exchange positions. This is shown
in figures 8(b) and (c), for which the corresponding LE spectra are given in (e) and (f).
Different chaotic regimes can be identified in figure 8(b), compared to (c). First, one
where the crossings only happen in the transient regime and the second where such
crossings can propagate through time and are present even in the steady-state regime.
The latter is the regime with roughly fifty percent positive LEs (the dark orange region
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in figure 3) and where LE repulsion is prevalent. We note that after exchanging positions,
particles quickly revert to the previous ordering due to the overwhelming strength of
the particle interactions. We checked that when different initial conditions are chosen,
e.g. uniformly distributed particle positions, the transient dynamics looks different, but
in the steady state, the general conclusions provided are still valid. This means that
the LE spectrum and the LE fluctuations are completely determined by the nonlinear
dynamics rather than by the choice of initial conditions.

In the literature, the term ‘avoided crossing’ is typically used to describe the repulsive
behavior of eigenvalues in quantum mechanical models with the change of some control
parameter [21]. Similar behavior, as already mentioned, has been used in the context
of LEs [14]. Note that the avoided crossing behavior discussed so far in this chapter
is in terms of particle trajectories. We identify a dichotomy, where the lack of avoided
crossings in the trajectories leads to avoided crossings in the LEs (exponent repulsion)
and vice versa.

Within the paradigm of the FK model, the particle trajectory crossing behavior
might appear to be nonphysical, as, due to its finite size, any classical object would forbid
it. However, in this regime and under the following variable changes 2πui = ϕi,m =
K = a2,mα = 1,mI = 2πF dc,mA = 2πF ac,ω = 2πν0 the dissipatively driven AC and
DC FK model directly maps to the realistic model of Josephson transmission lines in a
stripline geometry [52, 53]. This type of model can capture quantum phenomena that
occur in JJ systems despite being considered as classical in essence [15, 19]. In the JJ
array models, ϕi represents the phase jump of the wave function across a single junction,
and therefore, in this particular context, there is no ambiguity in the crossing behavior,
as it simply implies that phase order is violated.

3.4. Consecutive Lyapunov exponent spacing ratio

To supplement the standard tools that uncover the RMT statistics, such as the normal-
ized density in section 3.1 and the spectrum unfolding in section 3.2, we compute the
average consecutive spacing ratio r̄. This ratio is defined as

r̄ =

〈〈
min (s̃i′,j , s̃i′+1,j)

max(s̃i′,j , s̃i′+1,j)

〉〉
N−2,M

, (15)

where s̃i′,j is as defined in equation (12). First, the average is taken over N − 2 con-
secutive spacing values, then additionally over M samples. The consecutive spacing
ratio does not require unfolding and allows for a more transparent comparison between
RMT ensembles and experimental/simulated datasets [54]. In the study of quantum
many-body localization, where an extremely large number of realizations is computa-
tionally expensive to realize, the consecutive level spacing ratio PDF P (r) was shown
to provide more precise results than the common spacing distribution, P (s) [55]. The
average consecutive spacing ratio is independent of the local density of states and is
therefore a more suitable diagnostic tool than the unfolded spectrum in cases where the
number of ensemble realizations is limited. This happens, as mentioned, in quantum
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Figure 9. Consecutive LE spacing ratio r̄ (blue circles) for the different mass param-
eters used in figures 6 and 7. The lines between the values are guides for the eye.
The explicit expressions for the GUE and GSE ensembles are given in [54], while
the values for the Poissonian and GOE ensembles are given in the text. The inset
shows the r̄ for different masses along the F dc = 0.27 line (triangles), and other
randomly chosen parameter points in the hyperchaotic region with roughly ∼50%
percent positive LEs (squares). The inset data has been generated for N = 50 and
M ∼ 104. A discussion of the inset and the figure is given in the text.

many-body problems where sampling of the eigenspectrum is limited due to the expo-
nentially increasing Hilbert space dimension, or in our particular case, where we flow
∼N 2 differential equations to obtain the LE spectrum of N exponents.

In figure 9, we present the results for the particular six points in the parameter space
and statistics that were already the subject of investigation in sections 3.1 and 3.2. In
the strictly overdamped regime, the ratio r̄ is consistent with the analytically predicted
value 2 ln 2− 1 that corresponds to a Poisson distribution. In the underdamped regime
and with an increase in the mass, the consecutive LE spacing ratio slowly moves closer
to 4− 2

√
3, which corresponds to the GOE ensemble prediction [54].

In the inset of figure 9, we present the results of r̄ for multiple points in the parameter
region with roughly ∼50% percent positive LEs, i.e. parameter points in the dark orange
region in figure 3. The consecutive LE spacing ratio consistently shows agreement with
the GOE ensemble. In this check, we used N = 50 to generate enough samples for a
reliable evaluation. However, some points lie close to, or on top of, the GOE expectation,
which, after close examination of the unfolded spectrum, does not fully show compliance
with the expression for Wigner’s surmise. These results provide a false positive argument
for a complete overlap with the GOE, and should be used to state that the underlying LE
spectrum is close to, but surely not identical to the GOE due to dissipation, finite-size
effects, and insufficient statistics.

3.5. Distribution of the largest Lyapunov exponent

Finally, we discuss the largest LE λmax fluctuations in the hyperchaotic regime with
roughly 50% positive exponents. In common examples of chaotic dynamic systems, the
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distribution of individual finite-time LEs follows a Gaussian distribution [56] while,
for example, in the presence of intermittent chaos, this distribution has been shown
to be non-Gaussian [57]. In the following, we argue that, due to the presence of LE
level repulsion (see figure 7), the fluctuation statistics of the λmax show a behavior
similar to the Tracy–Widom (TW) distribution [58]. The TW distribution, in effect, is
a Gaussian distribution that is skewed and which has particular left and right decaying
tails. Before we present the results we obtained by using sensitive numerical indicators
for the presence of the TW distribution, we first briefly present its definition. The largest
eigenvalue statistics of an [N ×N ] GOE approaches the TW CDF as

F (λ) = lim
N→∞

Prob
((

λmax −
√
2N

)(√
2
)
N 1/6 � λ

)
. (16)

For a transparent comparison between the eigenvalue statistics of RMT and TW, see,
e.g. [59].

The fluctuation statistics of the largest/smallest eigenvalue of a random matrix
around its mean follows the TW distribution and since this was discovered, it has
been demonstrated that it plays an important role in many diverse fields such as
mathematical physics, directed polymer physics, random growth models, finance, etc
[60–62]. For example, in experiments of interface growth in thin films [63] the inter-
face height fluctuation statistics have shown to be in accordance with the solution of
the Kardar–Parisi–Zhang (KPZ) equation, which is precisely the TW distribution [64].
Depending on whether the growing interface is flat or curved, different universality
classes such as GOE and GUE were observed to be present, respectively. In the context
of RMT, the TW distribution successfully captures the crossover between two different
phases present in the eigenspectrum. In particular, the eigenvalues of an RMT ensemble
that follows the semi-circle law behave differently in the bulk compared to the edges of
the spectrum. The left tail of the TW distribution describes the ‘strong’ coupling regime
of the bulk and the right tail the ‘weak’ coupling regime present at the spectral edges
[65].

From figure 6(f), the right spectral edge of the LE spectrum in the regime with 50%
positive exponents appears to have finite support and to be consistent with the semi-
circle law. Moreover, several spatially extended dynamic systems with their respective
Lyapunov exponents and vectors have been found to fall inside the KPZ class [21]. There-
fore, naturally, we investigate whether the distribution of λmax in the dissipative and
AC- and DC-driven FK model is distributed in accordance with the TW distribution.
In this respect, we do not settle for simply superimposing the fluctuation histograms of
λmax and the TW PDF, but rather investigate this question using the following robust
measures.

To reduce statistical noise and minimize small dataset sampling bias (present in any
finite dataset such as our LE spectrum data) we average the statistical observables in
the following way

〈A [λmax (M
′)]〉P =

1

P

P∑
p=1

A
[
λmax (M

′
p)
]

(17)
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Figure 10. Scaling exponent b of the underlying fluctuation distribution for dif-
ferent ordered Les plotted against an increasing number of simulation averaged
realizations M ′ with P = 50. To reduce the graphical clutter, we chose to present
LEs significantly far apart in the spectrum. The expected spectral edge fluctua-
tions of b = −1/6 according to RMT are plotted in a straight dashed blue line for
comparison. In the inset, the standard deviation of the largest LE data is fitted
for M ′ = 104 and changing numbers of particles N for the largest LE λ1 = λmax.
The fitting parameters obtained are a = 0.003 394 96(5) and b = −0.1661(4). The
remaining simulation parameters are: F dc = 0.27, m = 4.653, ω = 1/2, F ac = 0.2,
and ν0 = 0.2. The data points for the main frame are generated by performing
regression analysis as depicted in the inset.

where A denotes the observable of interest and M ′
p is the size of the p’th subset of the

total dataset of size M . We sample M ′ � M values p = 1, 2, . . . ,P times and finally an
average is taken. Calculating averages using equation (17) is only beneficial in the case
of small M ′, and in case of large enough M , these averages should give the same output.

In figure 10, we present the results for the standard deviation σ of the distribution
of the largest LE and a few other LEs in the bulk. We find that with sufficient sampling,
λ1 = λmax fluctuates in the spectral edge, in accordance with the expectations of RMT
(the dashed blue line). In the inset, we show that for the largest M ′, the measured σ
in the LE spectrum follows the fitting function f(N ) = aNb, where a is a trivial scaling
parameter and b is the power-law exponent. The observed scaling of the fluctuations,
which follows −1/6, is consistent with the TW distribution. Furthermore, the LE λk, k �
1 fluctuations away from the edge exhibit the same trend as that present in GOE bulk
eigenvalues, i.e. movement toward N−1/2 spectral bulk scaling.

It is important to note that, in generating the datasets required for the analysis
in figure 10, with the change of the particle number N in the dissipative and driven
FK model deep inside the underdamped regime, the physics changes a bit as well.
In particular, the average percentage of positive LEs changes when the system size is
increased in this way. Therefore, a simple scan over different N to obtain σ invites
caution. Fortunately, when the remaining model parameters are fixed (see the caption
of figure 10) and for the selected Ns, the percentage fluctuation of positive LEs is less
than 1%.
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Figure 11. The skewness (red) and the excess kurtosis (blue) of the largest LE
distribution for N = 50 (circles) and N = 100 (squares). We consider m = 4.653,
M = 53 658 for the N = 50 case and m = 4.75, M = 66 370 for the N = 100 case,
while the DC drive is fixed at F dc = 0.27 ; with these parameters, the system is in
the hyperchaotic regime, with half of the LEs positive. The remaining parameters
are given in the caption of figure 6. The straight dashed lines are the skewness and
excess kurtosis of the GOE TW distribution. For comparison, we present the results
of a single M = 105 sampling of the largest eigenvalue of random GOE matrices
(stars) for N = 100. The number of subsequent averages taken is P = 50.

In figure 11, we compute the skewness and excess kurtosis which measure the asym-
metry of a PDF about its mean and its ‘tailedness,’ respectively. These kinds of measures
provide a test for the presence of the TW distribution, e.g. see [64]. We employ Pearson’s
second skewness coefficient and the coefficient of excess kurtosis defined as

Skew =
3 (〈λmax 〉M ′ − Λmax)

σ
, (18)

Kurt =
1
M ′

∑M ′

j=1 (λmax,j − 〈λmax 〉M ′)4[
1
M ′

∑M ′

j=1 (λmax,j − 〈λmax 〉M ′)2
]2 − 3, (19)

where σ defines the standard deviation and Λmax is the sample median [66]. The observed
skewness and excess kurtosis for the distribution of the largest LE are not in com-
plete agreement with the expected values for the TW distribution. Nevertheless, both
measures have a statistically significant trend of having positive values. Furthermore,
the skewness shows a consistent tendency to move closer to the TW skewness with
increasing N , while this is not the case for the excess kurtosis. This is because excess
kurtosis quantifies the behavior of the decaying tails of a given distribution and can
only be improved by sampling rare events, which, in turn, requires numerical effort
at a significantly larger scale than the one we were able to perform. We note that the
characteristic skewness and the shape of the tails of the largest GOE eigenvalue distribu-
tion (which is known to follow an asymptotic TW distribution) are numerically difficult
to obtain using finite N and straightforward sampling. This can be seen in figure 11,
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where the star-shaped data points represent such an attempt. In this case, the correct
asymptotic skewness and excess kurtosis have been extracted from [67] using specialized
techniques.

4. Conclusions

In this paper, by studying the Lyapunov exponent fluctuations, and treating the expo-
nents as eigenvalues that characterize the nature of the classical dynamics (chaotic,
quasi-periodic, and periodic), we provided numerical evidence for the existence of level
repulsion akin to the RMT GOE ensemble in the AC and DC dissipatively driven FK
model. The normalized Lyapunov exponent spectrum, Lyapunov exponent spacings, and
consecutive Lyapunov exponent spacing ratio consistently indicate the presence of both
uncorrelated and correlated statistical features in this model. Furthermore, an extensive
numerical study of the large parameter space revealed rich and varied dynamic phases.
In the strictly overdamped regime (when particle masses m→ 0) the particle trajecto-
ries show an ‘avoided crossing’ behavior, whereas deep inside the underdamped regime
and for a particular parameter set, we identified persistent trajectory crossing behavior.
We showed that these two regimes have Poissonian and almost Wigner GOE distributed
Lyapunov exponent spacings, respectively.

Our research is a step towards potentially explaining why classical dynamic models,
such as JJ array models subjected to external radiation (which represent related systems
to the dissipatively driven FK model), can capture quantum phenomena so well [15, 19,
29, 52]. In particular, the underlying statistics (Lyapunov exponents in classical, and
eigenvalues in the quantum case) seem to be guided by the same universal features. This
opens a new and interesting direction in this and related fields of research.

Furthermore, the identification of Poissonian statistics in the particular limit of the
strictly overdamped regime of the FK model gives hints to the potential presence of
integrable structures in the continuum limit of the damped and driven perturbed sine-
Gordon equation [25]. However, the particular role of the Lyapunov exponents and their
relation to integrability requires further investigations, which were performed in, e.g.
[68], for eigenvalue spacings in the quantum models. We conjecture that the presence
of uncorrelated statistics is a general feature which means that in any strongly cou-
pled overdamped system (with a sufficiently large number of degrees of freedom) where
Middleton’s no-passing rule applies, the spectrum of LE spacings has Poissonian statis-
tics . Moreover, in quantum many-body problems, the presence of Poissonian statistics
implies the existence of an infinite number of conservation laws, which typically leads
to an exact solution that uses the Bethe ansatz technique. Therefore, it would be inter-
esting to explore the contingency of our results on the existence of integrability in the
quantized version of the strictly overdamped version of the FK model, if such a model
can consistently be constructed.

An interesting aspect of the hyperchaotic regime with ∼50% positive LEs is the
presence of breathers. Examining the trajectories in more detail reveals the presence
of short-lived collective (involving more than one particle) excitations that appear to
mediate the particle crossings. From figure 8(f), this dynamic mechanism is not obvious
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and a more careful study, such as that of [69], of this interesting phenomenon and its
relation to LEs is required.

The main challenge we faced in this line of research was obtaining sufficient statistics
for the Lyapunov spectrum fluctuations for a reliable comparison with the asymptotic
results of the Gaussian random ensembles. In this paper, we extensively discussed this
fact and showed how, for the examined model, we had to solve∼N 2 differential equations
in the strongly nonlinear and chaotic regime (N is the number of particles) to determine
the spectrum. Interestingly, thanks to the sophisticated diagnostic tools developed in
the literature, even with finite N and a modest number of realizations M↪ we were able
to capture the main features which are extremely close to the prediction of the Gaussian
random matrix ensembles in the limits N →∞ and M →∞. Moreover, we presented
hints that the largest Lyapunov exponent fluctuations for a particular parameter regime
behave according to the famous Tracy–Widom distribution. Therefore, an imperative
future research direction is the application of efficient algorithms to investigate whether
this is indeed the case and how the different degrees of hyperchaos that are present in
the model influence the behavior of the largest Lyapunov exponent.

Acknowledgments
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Appendix A. Discussion of the total Lyapunov exponent spectrum

In this appendix, we discuss the total Lyapunov exponent spectrum measured for the
considered variant of the FK model in the underdamped regime. More specifically, we
present the results for the full spectrum of 2N exponents instead of the N largest
exponents used in the main text.

From figure A1, we observe that the spectrum of the remaining N exponents (not
displayed in figure 6) presents a mirror image of the spectrum of the largestN exponents,
implying equivalent exponent spacing statistics. We note that considering only the first
N largest exponents for a large enough ensemble already provides sufficient data for our
claims. For more details on the notations and parameters mentioned in the captions of
figure A1, please see section 3.
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Figure A1. Normalized total LE spectrum density of 2N exponents at F dc = 0.27,
ω = 1/2, F ac = 0.2, and ν0 = 0.2 for different masses: (a) this figure is the same as in
figure 6(a) m = 0, N = 400, and M = 790; (b) m = 0.5, N = 100, and M = 2116;
(c) m = 1.582, N = 100, and M = 3433; (d) m = 2.3, N = 100, and M = 3309;
(e) m = 3.298, N = 100, and M = 2815 and finally (f) m = 4.75, N = 100, and
M = 2825. The corresponding averages are: (a) λ̄ � −0.995, (b) λ̄ � −0.988,
(c) λ̄ � −0.316, (d) λ̄ � −0.217, (e) λ̄ � −0.151, and (f) λ̄ � −0.105. The dark blue
lines are the fits obtained via equation (8) and each one represents the PDF of the
respective spectrum. The number of histogram bins is 100.
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