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Entanglement and stabilizer entropy are both involved in the onset of complex behavior in quan-
tum many-body systems. Their interplay is at the root of complexity of simulability, scrambling,
thermalization and typicality. In this work, we study the dynamics of entanglement, stabilizer en-
tropy, and a novel quantity assessing their interplay - called anti-flatness, after a quantum quench
of a spin chain. We find that free-fermion theories show a gap in the long-time behavior of these
resources compared to their random matrix theory value while non-integrable models saturate it.

I. INTRODUCTION

Understanding quantum chaos in many-body systems
is crucial to a variety of scientific fields. In statistical
physics, the onset of quantum chaos is closely tied to
the mechanisms of thermalization [1–3]. In high-energy
physics, chaos and information scrambling play a funda-
mental role in understanding black hole dynamics [4–8].
Interestingly, quantum chaos is also relevant to the con-
cept of quantum advantage—the demonstrable speed-up
of algorithms run on quantum hardware. In quantum
information science, fully programmable quantum com-
puters derive their power from their universality, or their
ability to explore the full Hilbert space ergodically [9, 10].
The ability to harness ergodicity—and with it, quantum
chaos—lies at the core of quantum computing’s transfor-
mative potential [11–14].

While entanglement is widely regarded as a key factor
in the efficient classical simulation of quantum systems
and their dynamics [15, 16], it alone does not guarantee
a quantum speed-up over classical algorithms. In fact,
there are highly entangled quantum states that remain
classically tractable. A prominent example is the class of
stabilizer states, generated by operations from the Clif-
ford group—a finite subgroup of the unitary group [17–
19]. Despite their high entanglement, these states can
still be efficiently simulated using classical methods. In-
deed, the appearance of quantum chaos can be seen
as the onset of quantum complexity in the entangle-
ment pattern that results from injecting - through quan-
tum circuit doping or measurements of non-Clifford re-
sources [10, 20–23].

In quantum circuit dynamics, it has been demon-
strated that states generated by the Clifford group fail to
exhibit true quantum chaotic behavior. This limitation
arises because the Clifford group forms only a 3-design,
rendering it non-universal [24, 25]. The concept of a t-
design refers to how closely an ensemble of unitaries ap-
proximates the first t moments of an ensemble sampled
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according to the Haar measure. To achieve higher de-
grees of design, gates outside the Clifford group - such as
T-gates - are introduced, which generate non-stabilizer
states and promote the circuit dynamics to a higher com-
plexity [8, 21, 22]. More specifically, complexity is re-
flected in the fact that the circuit simulation times grow
exponentially in the system size. Whereas in the case of
states generated via the application of gates that belong
to the Clifford group grow only polynomially and thus
can be efficiently simulated via classical computers [26].
Due to these properties, non-stabilizer states — those
that transcend the Clifford framework and move towards
the universality and chaos characteristic of generic states
in the vast Hilbert space — are referred to as “magic
states”.

The insights from quantum circuits naturally lead to
the following question: How does quantum chaos emerge
in quantum dynamics governed by local Hamiltonian evo-
lution? This question arises as it is well established
that quantum chaos in quantum dynamics generated by
a local Hamiltonian arises from the non-integrability of
the Hamiltonian [3]. Does this imply that integrable
systems exhibit dynamics analogous to those generated
by Clifford circuits? The answer, as addressed in re-
cent studies [27, 28], is a resounding no. States of inte-
grable Hamiltonian many-body systems possess extensive
non-stabilizerness reflected in the linear scaling with the
qubit/spin number [29]. Evolving such states via inte-
grable quantum protocols leads to a further increase in
such resources [28]. Thus, there is no straightforward
analogy between circuit dynamics and Hamiltonian evo-
lution.

In this work, we provide a more comprehensive ex-
position and comparisons between integrable and non-
integrable dynamics in a closed quantum system through
the lens of non-Clifford resources and their interplay with
entanglement production. Specifically, we examine the
long-time behavior of quantum systems subjected to a
sudden quench, driving them out of equilibrium. Such
protocols are commonly encountered in cold atom exper-
iments and solid-state platforms, where understanding
their dynamics is crucial for demonstrating quantum ad-
vantage [11, 12, 30]
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As previously mentioned, entanglement alone is insuffi-
cient to induce the full complexity observed in quantum
many-body systems, nor does it guarantee the systems
will exhibit universal behavior. Therefore, our focus ex-
tends beyond entanglement to the resources outside Clif-
ford (or stabilizer) framework [17]. In particular, we em-
ploy the Stabilizer Rényi Entropy (SRE) [31] to quan-
tify the non-stabilizerness generated by these quantum
quench protocols.

In addition to entanglement and SRE, we explore the
anti-flatness of the entanglement spectrum [32, 33], which
provides further insights into the system’s complexity.
Our results reveal a strong correlation between the be-
havior of the SRE for the total state and the flatness
of the entanglement spectrum within subsystems, offer-
ing new perspectives on the interplay between these two
quantities.

It has then become increasingly clear that it is the
interplay between magic and entanglement that fosters
quantum complex behavior. From quantum many-body
theory to quantum thermodynamics, from black hole
physics to nuclear physics, it is now apparent that one
needs to investigate the deep connection between these
two kinds of entropy, entanglement, and stabilizer [34–
39]. One probe into the joint actions of these resources
is the anti-flatness of the reduced density operator [32].
Antiflatness is indeed a measure of non-local magic and
plays an important role also in the relationship between
entanglement and back-reaction in AdS-CFT [40, 41].

In the evolution of closed quantum systems, three fun-
damental factors must be considered [3, 42]: (i) Symme-
tries, which determine the role of conserved quantities
and how integrable systems reach equilibrium compared
to non-integrable systems that lack such symmetries; (ii)
Initial conditions, which shape the system’s dynamics
and outcomes based on the chosen starting state; and
(iii) Time scales, representing the necessary evolution
period to explore the system’s phase space sufficiently
and reach the quantum chaotic regime. In this work, we
adopt a comprehensive approach that incorporates all of
these key aspects, examining the quantum dynamics gov-
erned by local Hamiltonian evolution.

Previous comprehensive studies on the topic of generic
quench dynamics, such as Refs. [43–45], have not investi-
gated the role of non-stabilizerness. More recent works,
including Refs. [46, 47], have examined the SRE for in-
tegrable and non-integrable quench dynamics in Ising
chains. However, these investigations were limited to
short timescales and specific initial states, thereby re-
stricting broader insights into the generic behavior of
non-stabilizerness. On the other hand, approaches like
the one in Ref. [48] randomized the Hamiltonian dynam-
ics but did not specifically address the integrability of the
dynamics nor the choice of initial states. In contrast, our
work explores the time evolution of pure states that are
not necessarily ground states of any local Hamiltonian
but collectively addresses all three nuances raised above.
Specifically, we consider the following ensembles of initial

FIG. 1. Schematic representation of the results for the Hamil-
tonian evolution of a global quantum quench protocol in the
long-time limit. FR and FC initial state ensembles display
the same behavior and are grouped by a common grey back-
ground color. A single colored rectangle (which we associate
“0” in the figure) indicates the states have zero amount of
the particular resource. In contrast, five stacked rectangles
indicate the “maximal” (or “max”) as expected of a typical
random pure state. Notations: FF- free fermions, BA- Bethe
Ansatz.

states:

1. Factorized Random (FR) states,

2. Factorized Clifford (FC) states,

3. Non-Factorized Clifford (NFC) states.

These initial conditions are randomized in a way
to break any symmetry of the governing Hamiltonian.
Moreover, they are chosen so that different starting
points for the resources of magic and entanglement are
met. FR states possess zero entanglement and exten-
sive SRE, NFC states possess zero SRE and extensive
entanglement, while FC states possess neither of the two
resources. Notice that states belonging to the FR en-
semble are completely unentangled (on any partition)
but may exhibit maximal single-qubit magic. However,
single-qubit magic represents only a portion of the total
magic a state can host; a higher degree of magic can only
arise in the presence of entanglement [27].
Through the different quench protocols applied to

states from these ensembles, we paint a detailed picture
of the pathways leading to quantum chaos in Hamiltonian
dynamics. Our findings demonstrate that breaking inte-
grability results in universal behavior, which can be wit-
nessed by both entanglement and magic. As illustrated
in Fig. 1, we provide a visual summary of the key results
of this work. Notably, the concept of anti-flatness, as
defined below, encapsulates both aspects—entanglement
and magic—simultaneously, offering a unified perspective
on these two crucial features.
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II. SETTING THE STAGE

We now outline the key components required to de-
scribe our approach. First, in Section IIA, we explain
the procedure for generating the initial state ensembles,
with each state indexed by a subscript m = 1, 2, ...,M ,
where M denotes the ensemble’s total size or cardinality.
This section provides the necessary background on how
these states are prepared for quench dynamics. Next,
in Section II B, we define the entanglement and magic
monotones that serve as the primary tools for quantify-
ing the system’s evolution. These measures are central
to the analysis presented throughout the manuscript, en-
abling us to track and compare the behavior of different
ensembles. A discussion on the importance of reduced
density matrix eigenvalues and the associated property
of entanglement and magic, the anti-flatness is given at
the end of Section II B.

A. Initial states

1. Factorized Random (FR) States

We define the normalized pure FR state as a tensor
product of single-qubit states:

∣∣∣φFR
m

〉
=

N⊗

j=1

∣∣φ(θj , ϕj)
〉
, (1)

where N represents the total number of qubits or spins.
Each single-qubit state |φ(θj , ϕj)⟩ is given by:

|φ(θj , ϕj)⟩ = cos

(
θj
2

)
|0⟩+ eiϕj sin

(
θj
2

)
|1⟩, (2)

with the angles θj ∈ [0, π] and ϕj ∈ [0, 2π) uniformly
sampled for each qubit j = 1, 2, ..., N when numerically
generating the state. By construction, the FR state is
unentangled (i.e. trivial eigenvalues of the reduced den-
sity matrix) and exhibits only local non-stabilizerness
(magic) [27, 49] due to single qubit rotations moving it
away from the six possible stabilizer single qubit states
{|0⟩, |1⟩, |+⟩, |−⟩, |i⟩, | − i⟩} [50].

2. Factorized Clifford (FC) States

We generate a Factorized Clifford (FC) state using a
quantum circuit. The initial state is the computational
basis state |0⟩⊗N , which evolves as

∣∣∣φFC
m

〉
= URC

∣∣0
〉⊗N

, (3)

under the action of a random Restricted Clifford (RC)
circuit with depth Nlayers. The RC circuit consists of

multiple layers of gates, defined as

URC =

Nlayers∏

k=1

Uk =

Nlayers∏

k=1

∏

j

Uk(j), (4)

where the subscript k indicates a specific layer in the cir-
cuit. Each unitary Uk consists of N−1 single-qubit gates
applied at uniformly sampled positions j ∈ {1, 2, . . . , N}.
These gates are randomly chosen from the set

Uk(j) ∈ {Ij , Sj , Hj}, (5)

where Ij is the identity gate, Sj =
√
Zj is the phase gate

with θ = π/2, and Hj = 1√
2
(Xj + Zj) is the Hadamard

gate applied to qubit j. X,Y, Z refer to the Pauli matri-
ces, which are used to express the unitaries compactly.

In practice, to ensure we obtain the typical representa-
tive of this set of states we set the number of Clifford lay-
ers to be Nlayers = 50N2 [10, 32]. The term ”Restricted
Clifford” refers to excluding two-qubit gates, such as the
CNOT gate, which would introduce entanglement (see
next subsection). As a result, the FC states do not al-
ter (beyond equal weight) the amplitudes of the compu-
tational basis states and do not host entanglement, i.e.
they are factorized.

3. Non-Factorized Clifford (NFC) States

Compared to FC states, Non-Factorized Clifford
(NFC) states are generated in a similar manner and with
the same number of layers. However, the key distinction
lies in the structure of the unitary operation Uk, which
now includes two-qubit gates. Specifically, N − 1 two-
qubit gates are applied at uniformly sampled qubit pairs
(j, l) ∈ {1, 2, . . . , N} in each layer. These gates are ran-
domly selected from the set:

Uk(j, l) ∈ {Ij ⊗ Sl, Sj ⊗ Il, Ij ⊗Hl, Hj ⊗ Il,

CNOTj,l,CNOTl,j}, (6)

where Ij , Sj , and Hj represent the identity, phase, and
Hadamard gates, respectively, acting on qubit j. The
gate CNOTj,l is the controlled-NOT (CNOT) gate acting
on the l-th qubit, controlled by the j-th qubit, defined as

CNOTj,l = exp
[
i
π

4
(1−Xj)(1− Zl)

]
. (7)

In contrast to FC states, NFC states generated through
this process host extensive amounts of entanglement, yet
remain magic-free. States generated in this way belong
to the class of stabilizer states and the distribution of
their eigenvalues is flat (see Section II B 3 and Fig. 2).
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B. Quantities of Interest

1. Rényi Entanglement Entropies

For pure states, quantum correlations are quantified
by the Rényi entanglement entropies [50, 51], which are
defined as

Sα(ρR) ≡
1

1− α
log Tr [ραR] =

1

1− α
log




2R∑

i=1

λαi


 . (8)

The Rényi entropy depends on the parameter α ∈
[0, 1) ∪ (1,∞], and is computed from the reduced den-
sity matrix (RDM) ρR on a subpartition R, with the
corresponding eigenvalues λi, where

∑
i λi = 1. The

RDM is constructed by tracing out the degrees of free-
dom in the complementary subpartition (denoted Rc) as
ρR ≡ TrRc |Ψ⟩⟨Ψ|, where |Ψ⟩ represents the pure state of
the entire system.

For α → 1+, the Rényi entanglement entropy reduces
to the von Neumann entanglement entropy

S1(ρR) ≡ −Tr[ρR log(ρR)] = −
∑

i

λi log(λi). (9)

which captures the overall distribution of eigenvalues of
λi of the RDM, thus reflecting the average entangle-
ment across a bipartition. On the other hand, α > 1,
the entropy begins to weigh the largest eigenvalues more
heavily. An important property of Rényi entropies is
their monotonicity, i.e. for two different values of α,
if 1 < α1 ≤ α2, the entropy satisfies the inequality
Sα1

(ψ) ≥ Sα2
(ψ) [52].

Rényi entanglement entropies of Haar states. Haar
random pure states are quantum states drawn uniformly
from the Hilbert space according to the Haar measure.
They represent the most generic states possible with no
preferred structure or symmetries. Haar random pure
states are crucial in quantum chaos as they exhibit max-
imal entanglement and complexity, mirroring the behav-
ior of chaotic systems, where quantum dynamics leads to
the rapid scrambling of information [7, 53].

A lot is known analytically about these states. For ex-
ample, in Refs. [53, 54], the explicit Page curves (volume
law) for the scaling of the averaged Rényi entropy with
positive integer α for Haar random pure states is given
by (to leading order)

Sα

(
ψHaar
R

)
=

1

1− α
log

[
2N−R(1+α)

α∑

k=1

H(α, k)2(2R−N)k

]

(10)

where the coefficients

H(α, k) =
1

α

(
α

k

)(
α

k − 1

)
, (11)

are known as Narayana numbers [55]. The remaining
terms in the expression for the entanglement entropies

scale as O(2−N ), making them of vanishing contribu-
tion in the large N limit. Taking α → 1+, one recovers
the Page von Neumann entanglement entropy of these
states [56]. Note that Sα(ψ

Haar) ≡ EHaar

[
Sα

]
, where

EHaar[·] is the average over an ensemble of states sam-
pled according to the Haar measure.
For the half-chain case (R = N/2), different entropies

to leading order in system sizes read

S1

(
ψHaar
N/2

)
=
N

2
log (2)− 1

2
(12)

S2

(
ψHaar
N/2

)
=
N

2
log (2)− log (2), (13)

S3

(
ψHaar
N/2

)
=
N

2
log (2)− 1

2
log (5). (14)

The monotonicity property of the Rényi entropies is cor-
rectly satisfied as S1(ψ

Haar
N/2 ) > S2(ψ

Haar
N/2 ) > S3(ψ

Haar
N/2 ).

2. Stabilizer Rényi Entropy

The term “magic” [26] describes the property of quan-
tum states that places them beyond the stabilizer for-
malism. It is widely regarded as a crucial compo-
nent for universal quantum behavior, encapsulating what
makes states inherently “quantum”. To operationally
quantify magic we employ the Stabilizer Rényi Entropy
(SRE) [31], defined as

Mα(Ψ) =
1

1− α
log2 Pα (Ψ), (15)

where Ψ = |Ψ⟩⟨Ψ| density matrix of the pure state |Ψ⟩,
and

Pα(Ψ) =
1

d

∑

P∈PN

|⟨Ψ|P |Ψ⟩|2α, (16)

is the stabilizer purity. For pure states, the SRE for
α ≥ 2 is a good monotone from the point of view of
resource theory [31]. However, they are not a strong
monotone [57, 58]. On the other hand, the linearized
SREs

Mlin
α (Ψ) = 1− Pα(Ψ) (17)

are strong monotones. In general, the stabilizer entropies
are designed to quantify the spread of a state in the
basis of Pauli operators, and attempt to quantify the
difference of a given state to those that are stabilizer
states [31, 59]. The state |Ψ⟩ ≡ |Ψ(N)⟩ is N -qubit state
and d = 2N is the dimension of the Hilbert space, while
α denotes the Rényi index. With PN we denote the set
of Pauli strings built from the identity I and Pauli op-
erators X,Y, Z. The Hilbert space of N spins grows ex-
ponentially as 2N while the number of Pauli strings in
the Pauli group grows as 4N and the evaluation of SRE’s
implies a summation over an exponential number of ex-
pectation values over all possible up-to N Pauli string
correlation functions. Interesting properties of the SRE
are:



5

i. vanishing for pure stabilizer states, if Ψ ∈ STAB is
Mα(Ψ) = 0

ii. invariant under the application unitary Cliffords C,
as Mα(CΨC

†) = Mα(Ψ)

iii. additive Mα(Ψ⊗ Φ) = Mα(Ψ) +Mα(Φ),

iv. upper bounded as Mα ≤ log2 d, with a tighter
bound in the case α ≥ 2 as Mα ≤ log2(d+ 1)− 1,

v. lower bounds other well-known non-stabilizerness
monotones such as the stabilizer nullity ν [60], min-
relative entropy of magic [29], the robustness of
magic [61].

Compared to other non-stabilizerness monotones, the
SRE is efficiently computable for small to intermediate-
sized systems (N < 12 spins/qubits) without requiring a
minimization procedure or approximations. Recent ad-
vancements have introduced efficient methods for evalu-
ating pure states magic via the SRE using Matrix Prod-
uct State (MPS) representations [47, 57, 62–64]. Al-
though tensor network methods such as the MPS are
potent, their efficiency is ultimately constrained by the
amount of entanglement, i.e. the larger the bond di-
mension required to accurately approximate a quantum
state, the less efficient the techniques to evaluate the SRE
become. However, it is important to note that com-
pared to entanglement the SRE is less sensitive to the
growth of bond dimension [63]. Note that there is a case
where the phase transition of a many-body system in
non-stabilizerness is not followed by one in entanglement
in the thermodynamic limit [65].

Stabilizer Rényi entropy of Haar states. Recently, sev-
eral authors have computed the magic of pure Haar
random states using various techniques [48, 66], but in
Ref. [31] the linearized SRE for these states was obtained
and yields

Mlin
2 (ψHaar) = 1− 4

d+ 3
, (18)

and it simply follows in the large N limit for qubits d =
2N that

M2(ψ
Haar) = N − 2. (19)

Note that we have used the notation Mα(ψ
Haar) =

EHaar[Mα] to express the average over an ensemble of
states sampled according to the Haar measure.

3. Anti-flatness

Lastly, we present some details about the recently in-
troduced (anti)-flatness F [32]. It is a function of the

FIG. 2. Illustration of states with flat and non-flat distribu-
tion of RDM spectrum.

pure state’s RDM F(ρR) across a bipartition R ∪Rc as,

F(ρR) := Tr
[
ρ3R

]
−
(
Tr

[
ρ2R

])2
,

=

2R∑

i=1

λ3i −




2R∑

i=1

λ2i




2

= VarρR
(ρR) (20)

and is a property of the entanglement spectrum. More
specifically, the flatness measures how much the distri-
bution of the RDM eigenvalues deviates from a flat (or
uniform) distribution. Here Pur(ρR) = Tr[ρ2] defines the
purity. The spectrum is flat when the spectrum λi = 1/χ
for some integer 1 ≤ χ ≤ min(dR, dRc). For FA(ψ) ̸= 0,
the state contain magic. Interestingly, stabilizer states
are known to be a class of states that admit a flat distri-
bution in the entanglement spectrum [67]. Fig. 2 gives a
simple illustration of flat and non-flat states.

In Ref. [32] an important result regarding the link be-
tween anti-flatness and magic has been provided. More
specifically

⟨F(ρR)⟩C = c(d, dR)M
lin
2 (|ψ⟩). (21)

Here ⟨·⟩C denotes the average over the Clifford orbit,
while c(d, dR) is a proportionality constant that depends
on the total and subsystem size d and dR, respectively.
The Clifford orbit is a necessary device for any state that
is not volume law entangled for the link between the lin-
earized SRE and the anti-flatness to exist. As we illus-
trate in this work, in global quantum quench dynamics
the time-evolved states in the long-time limit naturally
develop extensive (volume-law) entanglement making the
anti-flatness a suitable tool to differentiate between the
different pathways towards equilibrium in the considered
settings.

Anti-flatness of Haar states. Looking back at Eq. (10)
we observe it contains the closed-form expressions for the
general RDM. We can easily read off α = 2, 3 and obtain
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for the half-chain partition R = N/2 the following

Tr

[(
ψHaar
N/2

)2
]
= 21−N/2, (22)

Tr

[(
ψHaar
N/2

)3
]
= 5 · 2−N . (23)

Simply taking the difference we obtain

F(ψHaar
N/2 ) ∼ 2−N , (24)

which tells us that for Haar random pure states, the anti-
flatness decays exponentially, and resolving such a small
number in a large N limit is challenging for typical states
of the Hilbert space. Again we use F(ψHaar) = EHaar[F ]
to express the average over an ensemble of states sampled
according to the Haar measure.

Due to the requirement of evaluating an exponentially
small number to obtain the anti-flatness of a typical state,
we resort to a different quantity, the “logarithmic anti-
flatness”. Which we define as the difference between the
Rényi entropies reading

F(ρR) := 2 (S2(ρR)− S3(ρR)) ,

= log




2R∑

i=1

λ3i


− log




2R∑

i=1

λ2i




2

. (25)

Due to the monotonicity of Rényi entropies, logarithmic
anti-flatness is always a positive number [52]. To quantify
the logarithmic anti-flatness of the RDM eigenvalues dis-
tribution any difference between Rényi entropies would
do, but here we simply focus on the smallest (α = 2 and
α = 3) indices choice.

Logarithmic anti-flatness of Haar states. Immediately,
we can evaluate the quantity for this class of states using
the results from Sect. II B 1 to be

F
(
ψHaar
N/2

)
= log

(
5

4

)
. (26)

This quantity is a constant compared to the first defini-
tion for the typical states and does not require computing
an exponentially small number as the number of qubits
is considered. This makes it more suitable for evaluation
in numerical simulations with many qubits/spins.

III. QUENCH DYNAMICS

A. Description

We perform a global quench protocol [68–71]. Specifi-
cally, the quantum state of the system evolves as:

|ψ0⟩ 7→ |ψt⟩ = e−iHt |ψ0⟩ , (27)

where t denotes the time and H is the quench Hamilto-
nian. The time evolution is unitary, preserving the norm

of the state vector. The initial states |ψ0⟩ are selected
from the ensembles described in Sect. II A, which include
various factorized and non-factorized ensembles. By in-
vestigating the response of these different ensembles to
the quench Hamiltonian dynamics, we aim to probe the
typicality of integrability in different many-body Hamil-
tonians.
To efficiently simulate the time evolution, we employ

the Krylov subspace method, a powerful technique for
reducing the computational complexity of time evolution
in intermediate-to-large quantum systems. This method
constructs a lower-dimensional subspace that captures
the essential dynamics of the full Hilbert space, allow-
ing us to bypass the need for full diagonalization of the
Hamiltonian. The key advantage of this approach lies
in its scalability and applicability to large system sizes,
making it particularly suited for studying long-time dy-
namics in quantum many-body models [72, 73]. In prac-
tice, we keep the relative truncation errors of the time-
evolved states under control and at around ∼ 10−12. The
truncation errors do not accumulate over the long-time
evolution with a simple choice of an appropriate time-
step, determined as a function of the final target time.
In the following, we specify those choices in the captions
of the figures we present. Naturally, the efficiency of the
Krylov subspace method is bounded by the ability to
store the full eigenstate.
For the Hamiltonians generating the time evolution, we

focus on the following one-dimensional spin-1/2 models,
chosen for their relevance in the study of both integrable
and non-integrable quantum systems:
(i) Transverse-field Ising model (TFIM) + longitudinal

(L) field

HTFIM+L=−J
N∑

j=1

XjXj+1−hz
N∑

j=1

Zj−hx
N∑

j=1

Xj .

(28)

In the absence of the longitudinal field (hx = 0), TFIM
can be solved exactly through a mapping to free fermions
using the Jordan-Wigner transformation [74–77]. This
transformation maps the spin operators to fermionic cre-
ation and annihilation operators, effectively reducing the
interacting spin system to a system of non-interacting
fermions.
During time evolution, we set the transverse field such

that the system is away from criticality, fixing J =
1, hz = 1.5. By introducing a small-to-intermediate lon-
gitudinal field hx ̸= 0, we break the integrability of the
model, allowing us to explore how the system’s dynamics
deviate from the integrable behavior.
(ii) XXZ chain + next-to-nearest-neighbor (NNN) cou-

pling

HXXZ+NNN =

N∑

j=1

[
XjXj+1 + YjYj+1 +∆ZjZj+1

+ α (XjXj+2 + YjYj+2 +∆ZjZj+2)
]
. (29)
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The XXZ model, with additional next-to-nearest-
neighbor (NNN) interactions, admits a rich phase dia-
gram encompassing both integrable and non-integrable
regimes. We differentiate three distinct regimes based
on the parameters ∆ (anisotropy) and α (strength of the
NNN coupling):

1. Integrable via the Free Fermion technique [74–77]

∆ = 0, and α = 0, (30)

In this regime, the XXZ chain maps to free
fermions, similar to the TFIM. The lack of inter-
actions between the fermions results in a highly
tractable, integrable system.

2. Integrable via the Bethe Ansatz [77]

∆ ̸= 0, and α = 0, (31)

For non-zero anisotropy ∆, the system remains in-
tegrable but cannot be mapped to free fermions.
Instead, the Bethe Ansatz provides an exact solu-
tion, relying on a set of coupled algebraic equations
that describe the system’s eigenstates.

3. Non-integrable

∀∆ and α ̸= 0. (32)

In this regime, the addition of NNN interactions
(α ̸= 0) breaks the integrability of the model, lead-
ing to chaotic dynamics and complex behavior.

We impose periodic boundary conditions to eliminate
edge effects in both models. In the following, we examine
the Hamiltonian dynamics of these models, focusing on
how integrability influences the system’s entanglement,
magic, and anti-flatness in the out-of-equilibrium regime.
We also explore how these models compare to quantum
chaos (as captured by by pure state sampled according
to the Haar measure) predictions in their long-time be-
havior, emphasizing the role of initial state ensembles in
shaping the dynamical response of the system.

B. Results

In Figs. 3 (a-c), we show the short-time (tfinal = 10)
dynamics of the TFIM+L Hamiltonian, focusing on the
von Neumann entanglement entropy, which is defined in
Eq. (9) and corresponds to the limit α→ 1+ of the Rényi
entanglement entropies. The entanglement entropy is av-
eraged over contiguous (connected) subpartitions of the
system and computed as

Sα(ψR) =
1

N

N∑

i=1

Sα(ψRi
), (33)

where N denotes the number of spins/qubits and the
number of possible bipartitions Ri (of size R) of the sys-
tem, represented here by the overline notation. The ini-
tial states for the quench protocol are selected from the
ensembles described in Sect. II A, and each observable is
further averaged as

⟨Sα(ψR)⟩M =
1

M

M∑

m=1

Sαm(ψR). (34)

The shaded areas represent the standard deviation from
the sample mean across M realizations of the initial
states.
For both the FC and FR ensembles (panels (a) and

(b), respectively), the initial states are unentangled, and
their Rényi entropy is zero by construction. As the states
evolve after the sudden quench, the entanglement grows
linearly at short times for both ensembles [68]. After
this rapid initial increase, the entanglement dynamics of
these initial ensembles follow similar qualitative trends,
yet the integrable and non-integrable cases remain distin-
guishable. Notably, even at short timescales, the entan-
glement in integrable dynamics is significantly smaller,
on average, compared to its non-integrable counterpart.
In Fig. 3 (d), we extend this analysis to much longer

times, up to tfinal = 104, compared to the results shown
in the upper panels. While the data is taken for initial
states from the FC ensemble, we observe similar behavior
for the FR ensemble (figure omitted as effectively conveys
the same observation), underscoring that the distinction
between integrable and non-integrable dynamics is in-
herent to the Hamiltonian dynamics. We average over
multiple final time steps for this figure as

⟨Sα(ψR)⟩M,t =
1

T

T∑

j=1

⟨Sα(ψR)⟩M (tj) (35)

where tj = (5 · 103 + 1)∆t− j∆t, ∆t = 2, and T = 100.
Additionally, we plotted the normalized von Neumann

entanglement entropy, focusing solely on the subsystem-
to-system size ratio. The dashed black line represents the
Page value S1(ψ

Haar
R ) = R log(2) for random pure states

in the N → ∞ limit rescaled to

2S1

(
ψHaar
R

)

N log(2)
= 2f, for f ∈ [0, 1/2]. (36)

Here, f = R/N is the subsystem-to-system ratio, and for
f ∈ [1/2, 1], the Page value is obtained by the transfor-
mation f → 1− f .
The behavior of the long-time averaged states sub-

jected to integrable dynamics is similar to the behav-
ior of the typical states of random quadratic Hamilto-
nians [54, 78–80]. Both the integrable (hx = 0) and
non-integrable (hx ̸= 0) dynamics display a volume law,
but with the difference that in the integrable case, the
volume-law coefficient depends on the subsystem frac-
tion [79]. More specifically, the leading order behavior of
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(e)
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long-time limit

FIG. 3. Panels (a-c): Half-chain von Neumann entanglement entropy Eq. 9 for short-time dynamics generated by TFIM-
L Hamiltonian and different initial state ensembles (see Sect. II A): Factorized Clifford (FC), Factorized Random (FR), and
Non-Factorized Clifford (NFC). Parameters choices: N = 16, M = 100 realizations, and hz = 1.5 and the time-step ∆t = 0.1.
The legends are shared between the panels (a-c). Panel (d): Average entanglement entropy for different subsystem partition
sizes in the long-time limit where the initial states are sampled from the FC ensemble. Parameters choices: N = 16, M = 50
realizations, ∆t = 2, tfinal = 104. Panel (e): Relative difference as defined by Eq. 37 of the von Neumann entanglement entropy
for parameter choices as in panel (d) but for increasing system sizes. Non-integrable dynamics in the long-time limit lead to
Haar random states, while integrable do not. The legends are shared between panels (d-e).

entanglement entropy is still present. Still, its magnitude
additionally depends on the f , making it smaller than
the maximal value for f > 0 [81]. Random Gaussian
states that are eigenstates of the quadratic Hamiltoni-
ans typically lead to such entanglement entropy scaling.
This type of state also captures eigenstates of quadratic
Sachdev-Ye-Kitaev (SYK2) model [79]. We note that
the results for the typical states of the random quadratic
Hamiltonians are obtained for ensemble-averaged (typ-
ical) middle-of-the-spectrum states, while here we are
performing a long-time average, but also an ensemble
average over the initial states.

Performing quench dynamics starting from particular
initial states, such as the ground states of the Ising chain,
may not immediately lead to dynamics that saturate en-
tanglement to a volume law behavior at short to interme-
diate time scales [69, 82]. An example of such a quench
protocol is presented in Fig. (5) of Ref. [47], where the
entanglement generated via non-integrable quench proto-
col deviates significantly from volume law, i.e. universal

behavior. As the entanglement and magic are closely
related resources this induces also non-universal behav-
ior in magic as well [27]. We address the challenge of
accessing the typical behavior of Hamiltonian dynamics
by randomizing the initial state, as previously discussed,
which allows us to reach the equilibrium regime within
computationally feasible simulation run times.

To exemplify the sensitivity of the dynamics to the
integrability-breaking parameter, in Fig. 3 (d) and (e), we
deliberately chose very small (relative to the remaining
scales of the model) values for the integrability-breaking
parameter, hx ≪ 1, i.e., hx ∈ [0.01, 0.1] (represented by
the teal square and blue triangle, respectively). Despite
the small values, the difference in bipartite entanglement
is substantial. It is important to note that such small
parameters result in dynamics that take much longer to
reach their steady-state regime compared to the parame-
ter choices and short-time evolution shown in the upper
panels of Fig. 3 (a-c).

While the non-integrable dynamics approach the Haar
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hx = 0.5 non-integrable
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Haar average N − 2

FIG. 4. Panels (a-c): Stabilizer Rényi entropy M2 measuring the amount of non-stabilizerness (magic) for short-time t ∈ [0, 10]
dynamics generated by TFIM+L Hamiltonian and different initial state ensembles (see Sect. II A): Factorized Clifford (FC),
Factorized Random (FR), and Non-Factorized Clifford (NFC). Parameters choices: N = 16, hz = 1.5, and the time-step
∆t = 0.1 with M = 100 realizations. Entanglement entropy for the same parameters is given in Fig. 3.

state expectation, represented by the black dashed line
and Eq. (12), the integrable dynamics oscillate around a
value significantly lower than this expectation. To quan-
tify this difference more precisely, in the final panel Fig. 3
(e), we compute the relative difference defined as

∆A =
|A−AHaar|
AHaar

, (37)

for the von Neumann entanglement entropy (where A =
S1). This shows that the finite-size numerical results for
the non-integrable quench dynamics quickly converge to
the thermodynamic limit of the Haar random state value
and universality. In contrast, the integrable dynamics ex-
hibit a much larger relative difference, highlighting their
distinct behavior.

It is important to note that for the NFC ensemble of
initial states, as already hinted in Fig. 3 (c), both in-
tegrable and non-integrable dynamics ultimately lead to
universal behavior. Specifically, if we were to present the
results under the same conditions as in panel (e), both
integrable and non-integrable data for the NFC ensemble
initial states would converge to zero as the system size
increases. This is particularly intriguing, as it reveals the
different pathways that dynamics can take depending on
the specifics of the initial conditions.

Another important detail is also evidenced by our
short-time dynamics results plotted in Fig. 3 (a-c). It is
the difference between the fluctuations displayed by the
averaged entanglement entropy between the integrable
and non-integrable dynamics for all the considered en-
sembles [83, 84]. The integrable dynamics lead to much
larger fluctuations in time than the non-integrable one for
all considered initial state ensembles, making this feature
independent of the initial state. A similar observation

can be made in the results shown in Ref. [47] when the
initial states are eigenstates of the Hamiltonian.

In quantum circuit dynamics, it has been shown that
the fluctuations in subsystem purity [85] of output states
generated by gates sampled from the full unitary group
(concerning the Haar measure) and the Clifford group
exhibit notable differences [31]. Specifically, for uni-
tary group sampling, these fluctuations scale as O(d−2),
whereas for Clifford sampling, they scale as O(d−a). The
value of a depends on the input state: a = 1 when the in-
put is the product state |0⟩⟨0|⊗N , and a = log2 (5)−1 for
any other stabilizer input state (see Sect. (4) of Ref. [8]).
Regardless of the initial state, the distinction between
non-universal (Clifford) and universal (Haar) sampling
is stark, making the output states distinguishable. To
induce a transition towards universality, it has been pro-
posed that the insertion of O(N) T-gates can achieve this
effect [8].

Given these findings, one may wonder whether the dif-
ferences observed between integrable and non-integrable
Hamiltonian dynamics might parallel those seen in t-
doped quantum circuits. Although circuit dynamics
evolve through discrete gates and Hamiltonian dynam-
ics unfold continuously over time, making them funda-
mentally distinct, the existence of a possible analogy is
interesting.

The purity fluctuations observed in quantum circuit
dynamics served as the initial motivation for developing
the SRE [31], aimed at quantifying the non-stabilizerness
resources introduced by T-gates, which drive the dynam-
ics towards universality. By a similar token, we apply the
SRE to investigate the Hamiltonian dynamics. We must
immediately underline that the non-integrable Hamilto-
nian eigenstates possess an extensive amount of non-
stabilizerness as expected from many-body systems [27–
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29], so any direct comparison is expected to fail.

In Fig. 4, we present the results of the short-time dy-
namics of the SRE, analogous to the analysis previously
conducted for the same time data in Fig. 3 and for the
entanglement entropy. Similar to the behavior of entan-
glement entropy, initial states from both the FC and FR
ensembles display distinct differences between integrable
and non-integrable dynamics. Specifically, integrable dy-
namics oscillate around a lower average value than what
would be expected if the dynamics were universal. A key
distinction between the FC and FR ensemble states is the
amount of magic present at the initial time. Nonetheless,
despite this difference, the two ensembles exhibit quali-
tatively similar dynamical behavior.

In contrast, the Hamiltonian dynamics of initial states
sampled from the NFC ensemble equilibrate to values
consistent with those of the Haar ensemble, regardless of
whether the dynamics are integrable or non-integrable.
This behavior mirrors what is observed for entanglement
entropy. The study of NFC ensemble states highlights
the crucial role of entanglement in the initial states for
determining both the quench time evolution and the sys-
tem’s average behavior. In this case, entanglement and
magic reach universality simultaneously and to the same
level.

To compute the SRE, we employ the Pauli Perfect
Sampling algorithm introduced in Ref. [47]. Starting
from the time-dependent state vector obtained via the
Krylov subspace method, we convert it into a MPS rep-
resentation and sample 104 Pauli strings. This approach
bounds the magic estimation error to approximately 10−2

when no truncation is applied to the bond dimension.
However, in this work, we approximate the bond dimen-
sion by halving its maximum value, which introduces an
estimated absolute error of 10−1 in the reported SRE re-
sults. We find that for our current work, this precision is
sufficient to highlight the main messages. An alternative
method for efficiently computing the SRE directly from
the MPS representation is described in Ref. [64]. For
comparison, sampling techniques that operate directly on
the state vector, such as those in Refs. [66, 86], generally
exhibit significantly larger errors than the Pauli Perfect
Sampling algorithm. One more comment must be added
on Fig. 3. Here, in panel (c), the averaged 2-SRE at the
initial time exhibits a larger error than the theoretical
prediction. The reason for this error is to be found in the
bond dimension’s truncation, which at t = 0.0 involves
a stabilizer state that is also typically highly entangled.
The effect of the truncation is therefore to perturb the
stabilizer state, thus injecting some magic.

In Fig. 5, we present results for the late-time quench
dynamics using initial states sampled from the FR en-
semble, with the evolution governed by the TFIM+L
Hamiltonian. In the long-time limit, both entanglement
and magic (upper row) reveal a clear distinction between
integrable and non-integrable dynamics. Similar behav-
ior is observed when the initial states are sampled from
the FC ensemble. However, for initial states drawn from
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FIG. 5. Ensemble averaged relative difference defined for
different quantities in the case of the long-time quench dy-
namics generated by the TFIM+L Hamiltonian. Parameters
choices: M = 50, ∆t = 2, tfinal = 104 (long-time limit), and
FR as the initial state ensemble.

the NFC ensemble, this distinction between integrable
and non-integrable quenches disappears, which can al-
ready be inferred from Fig. 3 and 4 (c). These findings
highlight the critical role of the initial state’s entangle-
ment in shaping the global quench dynamics, suggesting
that the pathways to long-time behavior and universal-
ity strongly depend on the entanglement properties of
the initial state.

Moreover, to simultaneously quantify entanglement
and magic, we utilize the recently introduced (anti)-
flatness measure, F(ρR). As shown in Fig. 2, a flat
distribution of reduced density matrix (RDM) eigenval-
ues is a hallmark of stabilizer states. For instance, the
eigenstates of the toric code, which are stabilizer states,
exhibit a flat RDM eigenvalue distribution [67]. Any de-
viation from this flat spectrum provides a measure of the
magic content in the total state [32].

It is important to note that non-entangled states -
those across a bipartition with only one non-zero RDM
eigenvalue - can still possess magic. However, this magic
arises purely from local single-qubit or single-spin char-
acteristics. For example, states from the FR ensemble
neither display a flat nor a non-flat spectrum, as a single
non-zero RDM eigenvalue characterizes them. Nonethe-
less, their magic originates solely from single-qubit ro-
tations. Quench dynamics induce an entanglement in-
crease, and consequently, this makes the anti-flatness a
valuable tool for probing the magic content of the evolv-
ing states.

Examining the anti-flatness in Fig. 5 (lower panels)
reveals a clear separation between integrable and non-
integrable dynamics. Additionally, the logarithmic anti-
flatness F(ρR) similarly exhibits a distinct difference
between the two dynamics. Unlike entanglement and
magic, where the universal value is approached from be-
low, the anti-flatness approaches the universal value from
above (not shown in the given plots). The inclusion of the
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FIG. 6. Ensemble averaged relative difference defined for dif-
ferent quantities in the case of the long-time quench dynamics
generated by the XXZ+NNN Hamiltonian where in brack-
ets the parameters (∆, α) are denoted. Parameters choices:
M = 50, ∆t = 2, tfinal = 104 (long-time limit), and FR as the
initial state ensemble.

absolute value in the definition of Eq. (37) thus ensures
a positive quantity, enabling an unambiguous differenti-
ation between the dynamics.

Beyond free-fermion (FF) theories, as a final result of
our work, we extend this investigation to models that
exhibit integrability with non-trivial interactions, specif-
ically Bethe Ansatz (BA) integrable systems. Quench
dynamics in such settings have been extensively stud-
ied; see, for instance, Refs. [3, 69, 70, 82] and refer-
ences therein. A prototypical example of a BA integrable
model is the XXZ chain, described by the Hamiltonian in
Eq. (29) when the next-to-nearest-neighbor (NNN) cou-
pling vanishes, i.e., α = 0. This model is FF integrable
for (∆, α) = (0, 0) and BA integrable for any (∆, 0). Our
findings indicate that the long-time behavior of global
quantum quench dynamics for this Hamiltonian (shown
in Fig. 6) reveals trends similar to those observed in the
Ising chain. Specifically, Hamiltonian dynamics governed
by free fermions do not exhibit the universality and er-
godicity characteristic of quantum chaotic systems, as
captured by Haar random states. Breaking FF integrabil-
ity enables the time-evolved states to achieve full Hilbert
space ergodicity.

Interestingly, we find that the dynamics driven by
Bethe Ansatz integrable Hamiltonians can resemble those
of non-integrable systems, ultimately approaching the ex-
pectations of Haar random states. As previously men-
tioned in the context of quadratic Hamiltonians and in-
tegrable dynamics, the long-time states resulting from
global quench dynamics are analogous to those found in
the middle of the spectrum of the respective Hamilto-
nian. Ref. [87] examined the bipartite entanglement en-
tropy of such typical states in the BA integrable XXZ
model, revealing a notable similarity to the free-fermion
response. Specifically, the average entanglement entropy
of these states depends on the system-to-subsystem ratio

f . However, this observation pertains to typical states in
the zero magnetization sector and does not account for
states with varying total magnetization. In contrast, the
time dynamics we study involve excitations and high-
energy states spanning all available magnetization sec-
tors. Consequently, these dynamics are not constrained
to a distinct integrable pattern, reflecting a more com-
plex behavior.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we studied the dynamical behavior of
non-stahilizerness resource measured by SRE after a
quantum quench of a spin chain. Since SRE is involved
in the onset of quantum chaos in its interplay with entan-
glement production, one would think that the long-time
behavior of SRE depends on whether time evolution is
generated by a chaotic Hamiltonian or not. We have
shown that, in free-fermion theories, SRE shows a gap
with respect to the Haar-value, therefore signaling the
lack of quantum complex behavior. On the other hand,
non integrable models show a perfect adherence to the
Haar value. To understand the role of both entangle-
ment and stabilizer entropy production we use random
initial states that possess either resource, or none. In-
terplay and correlations between entanglement and SRE
are of fundamental importance of the understanding of
quantum many-body systems. One way to characterize
their joint behavior is through measures of anti-flatness
which show how SRE is spread across the system. In this
work, we show that also anti-flatness measures are capa-
ble of distinguishing free-fermion theories non-integrable
systems.

Interestingly, the Bethe-ansatz integrable model does
not show a gap in their long-time behavior. This suggests
that, while the SRE-gap tells apart free-fermion theo-
ries, a complete characterization of quantum chaos re-
quires more refined probes, for instance, looking at tem-
poral fluctuations of SRE and higher moments of anti-
flatness [8, 10].

In perspective, we are interested in propagation as-
pects of SRE, showing how quantum quenches by local
perturbations carry SRE about the system and whether
its spreading is ballistic or diffusive. Of course, an inter-
esting question is the role played by either criticality or
gaplessness in the time evolution. The interplay between
SRE and entanglement could be investigated through the
lens of non-local magic [40]. Finally, we are interested
in applying these methods in other quantum many-body
systems of interest, e.g., disordered systems with quan-
tum many-body localization.

During the completion of this work, we became aware
of a complementary study in Ref. [88].

The numerical codes, data, and plotting scripts em-
ployed in this work are available at Zenodo [89]
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[79] P.  Lydżba, M. Rigol, and L. Vidmar, Physical Review
Letters 125, 180604 (2020).

[80] E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vid-
mar, PRX Quantum 3, 030201 (2022).

[81] In Ref. [79] the explicit expression has been derived
for random quadratic Hamiltonian eigestates and reads

S(ψquadratic
R ) (f) =

[
1 − 1+f−1(1−f) ln(1−f)

ln 2

]
R ln 2. How-

ever, obtaining a direct comparison (overlap of our results
with this expression) is hard to make due to finite-size nu-
merics and other details such as the filling factor on top
of the fact that here we consider a particular long-time
limit of the quench.

[82] M. Kormos, M. Collura, G. Takács, and P. Calabrese,
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